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Abstract. Near-critical extrema in the properties of
water may influence flow patterns in hydrothermal sys-
tems, but singularities in equations of state for H,O at
its critical point have inhibited quantitative modeling.
Posing governing equations in terms of pressure (P)
and enthalpy (H) avoids these singularities and facili-
tates computation. Numerical simulations with a P-H
based model show little near-critical enhancement in
heat transfer for systems in which flow is driven by
fixed pressure drops. However, in density-driven sys-
tems, near-critical variations in fluid properties can
enhance convective heat transfer by a factor of 10% or
more ("superconvection") if permeability is sufficiently
high. Near-critical two-phase processes ("heat pipes")
are at least equally effective at dissipating thermal
energy. The restriction to high-permeability environ-
ments within a fairly narrow P-H window suggests that
superconvection may be quite rare in natural systems

Introduction

The possible influence of near-critical phenomena on
transport in hydrothermal systems has long been recog-
nized. Near-critical variations in fluid properties tend to
maximize buoyancy forces and heat-transport capacity while
minimizing viscous-drag forces. Norton and Knight [1977]
suggested that near-critical extrema in fluid properties may
control the overall style of hydrothermal fluid circulation,
while noting that small differential pressure and temperature
(T) values would be required to simulate the process ade-
quately. Dunn and Hardee [1981] introduced the term
"superconvection” to describe laboratory results that docu-
mented near-critical heat-transfer rates as much as 70 times
greater than conductive rates.

The near-critical extrema in fluid properties create compu-
tational problems which have inhibited quantitative model-
ing, although Cox and Pruess [1990] attempted to reproduce
the Dunn and Hardee results numerically. In the past, most
users of geothermal models have had to choose between
multiphase models with a temperature range of about 0-350
°C [e.g. Pruess, 1991] and models for single-phase, pure-
water systems with a temperature range of about 0-1,000 °C
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[e.g. Norton and Knight, 1977]. Both sets of models have
tended to avoid the region very near the critical point.

For models that use pressure and temperature as depen-
dent variables, the near-critical extrema pose particularly dif-
ficult problems. In P-T coordinates, the critical point is at
the vertex of the vaporization curve (Fig. 1A), and repre-
sents a singularity in equations of state. For example, the
partial derivatives of density [p(P,T)] diverge to teo, and
heat capacity C.(P,T) diverges to e [Johnson and Norton,
1991]. The HYDROTHERM model used in this study
[Hayba and Ingebritsen, 1994] avoids computational prob-
lems at the critical point by formulating the governing equa-
tions in terms of pressure and enthalpy. In P-H coordinates,
two-phase conditions are represented as a region, rather than
a single curve (Fig. 1B), and the density, viscosity, and tem-
perature of liquid water and steam merge smoothly to finite

values at the critical point (Fig. 1C). The P-H formulation
uniquely specifies the thermodynamic state of the fluid
under both single- and two-phase conditions. HYDRO-
THERM is a descendent of subcritical codes developed at
the U.S. Geological Survey in the late 1970's [Faust and
Mercer, 1977; 1979a; 1979b]. Other P-H and P-internal
energy based multiphase models were developed at about
the same time [cf. Voss, 1978] but were not applied to the
near-critical problem.

Mathematical approach

HYDROTHERM uses a finite-difference approach to sim-
ulate multiphase flow of pure water and heat at temperatures
of 0-1,200 °C and pressures of 0.05-1,000 MPa. It solves
the following expressions for mass and energy conservation:

Oln(Sypw + Ssps)/0t — V- kiksps/ps - (VP — psgVD)]( -
1

Vlkkpw /My - (VP = pygVD)] - Ry =0
and
oSy pw Hy + nSsps Hg + (1 - m)pH,1/0t —

V-[kkspsHs /s - (VP —pgVD)] — 2
V-[kkrpwHy /My - (VP = prugVD) - V-K,, VT — Ry =0,

respectively, where » is porosity, § is volumetric saturation
Sw + Sg = 1), p is density, ¢ is time, £ is intrinsic permeabil-
ity, k; is relative permeability (0 < k, < 1), W is dynamic vis-
cosity, P is pressure, g is gravitational acceleration, D is
depth, H is enthalpy, K, is medium thermal conductivity, T
is temperature, R, and Ry are mass and energy source/sink
flowrate terms, and the subscripts w, s, and r refer to liquid
water, steam, and rock, respectively.
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Figure 1. (A) Pressure-temperature  and (B) pressure-
enthalpy diagram, showing thermodynamic regions; (C),
pressure-enthalpy diagram, showmg contours of equal tem—
perature (°C), density (kg m" ), viscosity (Pa-sec x 10" )
and mass fraction steam. Within the two-phase region the
enthalpy of the fluid mixture, Hy, is calculated as [Hy,SywPw
+HS PSPy + SPyl.

Assumptions implicit in these equations are that a two-
phase form of Darcy's Law is valid; that rock and water are
in thermal equilibrium; and that capillary-pressure effects
and heat transfer by dispersion are negligible. Several con-
stitutive relations complete the description of the system
[Faust and Mercer, 1979a; Hayba and Ingebritsen, 1994].
A large (2 Mbyte) lookup table interrogated by a bicubic
spline routine provides fluid densities, viscosities, and tem-
peratures. We used fluid density and temperature values
from the routines of Haar et al. [1984] and viscosity values
from the formulation by Sengers and Watson [1986]. Cubic
splines describe fluid properties at saturation. Each of the
thermodynamic variables in equations (1) and (2) is ﬁnlte at
the critical point (P = 22. 055 MPa, H = 2086 0 kJ kg T=
373.98°C,p=322kgm™>, and p=3.94x 107 Pa-s).

Equations (1) and (2) are strongly coupled and highly non-
linear, because a number of the independent variables are
functions of the dependent variables P and H. HYDRO-
THERM uses Newton-Raphson iteration to treat the nonlin-
ear coefficients. Mass and energy balances for each finite-
difference block determine convergence. With the P-H for-
mulation, near-critical computations have actually proven to
be less difficult than problems involving lower-pressure
phase transitions, where there is a larger contrast in fluid
properties.

NGEBRITSEN AND HAYBA: CRITICAL POINT

Above the critical point, the distinction between liquid and
steam disappears, and the values assigned to the saturation
variables become arbitrary. To avoid problems in determin-
ing the average fluid properties for flow between super- and
subcritical blocks, we treated supercritical blocks as though
they contain two phases with identical properties.

One-dimensional P-H paths

One-dimensional simulations indicate that permeability
has a pivotal effect on near-critical P-H trajectories. In a
series of experiments, we modeled flow along a 1-km-long
horizontal column, assigning various permeabilities and
fixed P-H values at the ends of the column. Equations (1)
and (2) were solved iteratively until mass and energy fluxes
reached a steady state. Thermal conductivity of the medium
was held constant at 2 W m™! K1 Although there is some
near-critical variation in the thermal conductivity of water,
the resulting effect on K, is small for low-porosity media,
because K, ~ K, a '")K " [Sass et al., 1971].

Figures 2 and 3 show results from two sets of experiments
with different P-H endpoints. Within each set, differences
in permeability cause the flow path to take different trajecto-
ries that are distinguishable in both P-H (Fig. 2A) and P-T
(Fig. 2B) coordinates. In set 1, the high-permeability experi-
ments intersect the critical point, and in set 2 the low-perme-
ability runs do so.

At low permeabilities (<108 m?), heat transport by con-
duction dominates, and the P-H and P-T trajectories (Fig. 2)
define a nearly constant temperature gradient (Fig. 3). At
higher permeabilities 1016 m2), advection dominates, and
the cooling trajectories reflect a nearly constant "flowing
enthalpy", as defined by

(OwpwHyw + VspsHe) / 0Py + UsPs), @)

where v is Darcian velocity (volumetric flowrate) (Fig. 3).
Various quantitative analyses of flow near magmatic intru-
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Figure 2. (A) Pressure-enthalpy and (B) pressure-tempera-
ture trajectories for two sets of one-dimensional experiments.
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Figure 3. Results from experiment set 1 (Fig. 2), showing
temperature gradient and flowing enthalpy as functions of
distance along column,

sions have recognized a transition from conduction- to
advection-dominated transport over the same permeability
range [e.g. Norton and Knight, 1977].

In single-phase regions the "flowing enthalpy" is identical
to the enthalpy of the in situ fluid, but in the two-phase
region flowing enthalpy is strongly dependent on the mobili-
ties of the two phases, and therefore on the choice of relative
permeability functions. We used simple linear functions
with no residual steam and liquid saturation to obtain the
results shown here. Using different relative-permeability
functions would change the trajectories of the high-perme-
ability experiments through the two-phase region, but would
not affect the transition from constant temperature gradient
to constant flowing enthalpy over a finite range of perme-
abilities (Fig. 3).

Numerous subsequent one-dimensional experiments in
which constant P-H boundaries were held much closer to
the critical point showed little evidence of enhanced trans-
port near the critical point; for particular endpoints, mass
and energy fluxes scaled nearly linearly with permeability.
Where flow is driven by a fixed pressure drop, near-critical
phenomena appear to be much less important than variations
in rock properties.

Two-dimensional convection

We used an equidimensional vertical slab to explore buoy-
ancy driven flow. The upper and lower boundaries were
impermeable and isothermal (with Ty,o > Top ), and the lat-
eral boundaries were impermeable and insulated. Thermal
conductivity was held constant at 2.0 W m ! K1, We varied
the permeability of the slab (k), the temperature drop across
the slab (AT), the dimensions of the slab (AL), and initial
pressure at the top of the slab (Py,p,). The value of Py, was
not held fixed, but the initial ﬂmg density dlstrlbunon was
carefully prescribed to avoid thermal-pressurization effects,
so that Py, did not vary greatly during the course of a simu-
lation. Results are posed in terms of the Nusselt number,
Nu, versus the average temperature of the slab (T,ye, Or
[Tiop + Totl/2). The Nusselt number is the ratio of the sim-
ulated heat-transfer rate to the purely conductive rate, or
q/(KLAT/AL), where ¢ is the horizontally averaged upward
heat flux.

The two-dimensional experiments demonstrate "supercon-
vection" driven by large near-critical density differences,
and result in heat-transfer enhancement by factors of >1
Maximum Nu increases with permeability (Fig. 4A) and
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shifts towards higher temperatures with increased Py, (Fig.
4B), following the fluid-property extrema, which also trend
towards higher temperatures at pressures above the critical
point. Results for larger AT (Fig. 4C) and AL (Fig. 4D) sug-
gest that convection is strongly enhanced whenever the criti-
cal temperature lies within the slab (for example, for T, in
the range of 370-378 °C for AT = 10 °C, and for T,y in the
range of 366-382 °C for AT = 20 °C). In convecting sys-
tems Nu is usually proportional to the Rayleigh Number Ra,
and it has been noted previously that enhanced values of Ra
can occur over a fairly broad near-critical P-T range [e.g. by
Sengers, 1971].

The complexity of convective flow increases with increas-
ing Nu: there is a systematic variation from unicellular con-
vection at Nu < 2.5, to bilaterally symmetric cells at Nu ~
2.5-5, to numerous, smaller cells at Nu >5. Nu ~ 5 corre-
sponds to Ra ~ 500, close to the suggested value for transi-
tion to unsteady flow [Ra ~ 400: Kimura et al., 1986].

Figure 5 shows additional results from the set of experi-
ments at £ = 10”2 m? shown in Figure 4A. Gradients in
fluid enthalpy (Hpo: - Hiop, Or AH) and density (Ppax
Pmin> OF Ap) across the sla% both increase dramatically as
T,ve approaches the critical temperature. The maximum
fluid velocity (vy,) in the slab is highly correlated with Ap,
and Nu is highly correlated with the product of the mass flux
and the enthalpy gradient (v,p,,AH). Figure 5B shows that
Nu is also proportional to the Ra value calculated using fluid
propertles at Py, and T,y The general correlation Nu =
0.218Ra%3 [Combarnous and Bories, 1975] fits our results
fairly well, but a closer correlation is obtained by an empiri-
cal fit to our own results, which gives Nu=0.13 1Ra®

Nearly all of the two-dimensional results are single-phase,
because Piq, is .001 MPa or more greater than the critical
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Figure 5. Further results from simulations with k = 1012 m?
summarized in Figure 4A. In (A), all parameters are normal-
1zed with respect to thelr maximum values (AH = 406.5 kJ
kg Ap = 2263 kgm L=0648 x 10" Pa-sec, vy =782
X 10 m s}, and Nu = 225) In (B), our simulated Nu val-
ues are compared with Nu values calculated as f(Ra).

pressure. Interestingly, the largest value of Nu belongs to
the only two-phase result (Fig. 4B). In this case with Py, =
21.056 MPa, a "heat pipe" occupies much of the slab: steam
flows vertically upward and condenses, releasing latent heat

of condensation near the top of the slab. An equivalent
mass of liquid water percolates downward and vaporizes.

Discussion

Our results show that near-critical variations in fluid prop-
erties can enhance convective heat transfer by a factor of
10? or more if permeability is sufficiently high. Near-criti-
cal two-phase processes seem to afford equally viable heat-
transfer mechanisms, consistent with the fact that, for a
given AT, AH (in this case Hy - H,) and Ap (py, - ps) are
both larger under two-phase conditions than they can be at
or above the critical point itself.

The permeability required for superconvectlon in our 10-
m x 10-m slab with AT = 2 °C is about 101> m? (Fig. 4A),
higher than is believed typical of near-magma environ-
ments. For example, the basaltic rocks that hosted the Skaer-
gaard intrusion aP ar to have had time- and volume-
averaged k ~ 10° [Manning et al., 1993], and the
hydrothermal systems of Kilauea's East R1ft Zone are found
in basalts with k < 10715 m2 [Ingebritsen and Scholl,
1993].  Simulations with dunensions and permeabilities
more representative of a magmatic-hydrothermal system
gAL— 1 km, AT =100 °C, Pyop =22.056 MPa, k = 10107
5 m?) led to Nu < 6. The restriction to high-permeability
environments within a fairly narrow P-T or P-H window
suggests that superconvection may be quite rare in natural
systems. It may be most likely to occur where strain rates
are sufficient to maintain permeability at depth despite com-
peting processes such as silica deposition, for example,
within high-angle fault zones in volcanic environments.
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