[U. S. Geological Survey]

Chapter 8

Lithogenic and Cosmogenic Isotopes in Catchment Hydrology

Gregory J. Nimz



Isotope Tracers in Catchment Hydrology (1998), C. Kendall and J. J. McDonnell (Eds.)
Elsevier Science B.V., Amsterdam, pp. 247-290.


References

Aberg, G., 1995. The use of natural strontium isotopes as tracers in environmental studies. Water, Air and Soil Poll., 79: 309-322.

Aberg, G., Jacks, G. and Hamilton, P.J., 1989. Weathering rates and 87Sr/86Sr ratios: An isotopic approach. Jour. Hydrol., 109: 65-78.

Allegre, C.J., Dupre, B., Negrel, P., and Gaillardet, J., 1996. Sr-Nd-Pb isotope systematics in Amazon and Congo River systems: Constraints about erosion processes. Chem. Geol. (Iso. Geo. Sect.), 13: 93-112.

Allison, G.B., Gee, G.W. and Tyler, S.W., 1994. Vadose-zone techniques for estimating groundwater recharge in arid and semiarid regions. Soil Sci. Soc. Am. J., 58: 6-14.

Andrews, J.N. and Fontes, J-Ch., 1993. Comment on "Chlorine 36 dating of very old groundwater 3. Further studies in the Great Artesian Basin, Australia" by T. Torgersen et al.. Water Resour. Res., 29: 1871-1574.

Andrews, J.N. and Kay, R.L.F., 1978. The evolution of enhanced 234U/238U activity ratios for dissolved uranium and ground-water dating. In: Short Paper of the Fourth International Conference, Geochronology, Cosmochronology, Isotope Geology: U.S. Geological Survey Open-file Report 78-701, p.11-13.

Andrews, J.N. and Kay, R.L.F., 1982. 234U/238U activity ratios of dissolved uranium in groundwaters from a Jurassic Limestone aquifer in England. Earth Planet. Sci. Lett., 57: 139-151.

Andrews, J.N. and Kay, R.L.F., 1983. The U contents and 234U/238U activity ratios of dissolved uranium in groundwaters from some Triassic sandstones in England. Chem. Geol. (Iso. Geo. Sect.), 1: 101-117.

Andrews, J.., Edmunds, W.M., Smedley, P.L., Fontes, J.-Ch., Fifield, L.K., and Allan, G.L., 1994. Chlorine-36 in groundwater as a palaeoclimatic indicator: the East Midlands Triassic sandstone aquifer (UK), Earth Planet. Sci. Lett., 122: 159-171.

Andrews, J.N., Giles, I.S., Kay, R.L.F., Lee, D.J. Osmond, J.K., Cowart, J.B., Fritz, P., Barker, J.F., and Gale, J., 1982. Radioelements, radiogenic helium and age relationships for groundwaters from the granites at Stripa, Sweden. Geochim. et Cosmochim. Acta, 46: 1533-1543.

Andrews, J.N., Fontes, J.-Ch., Michelot, J.-L., and Elmore, D., 1986. In-situ neutron flux, 36Cl production and groundwater evolution in crystalline rocks at Stripa, Sweden. Earth Planet. Sci. Lett., 77: 49-59.

Bailey, S.W., Hornbeck, J.W., Driscoll, C.T., and Gaudette, H.E., 1996. Calcium inputs and transport in a base-poor forest ecosystem as interpreted by Sr isotopes. Water Resour. Res., 32: 707-719.

Balderer, W. and Synal, H.-A., 1997. Use of chlorine-36 as tracer for the evolution of waters in geothermal and tectonically active areas in Western Turkey. Nucl. Instr. Meth. Phys. Res., B123: 387-393.

Banner, J.L. and Hanson, G.N., 1990. Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis. Geochim. et Cosmochim. Acta, 54: 3123-2137.

Banner, J.L., Wasserberg, G.J., Chan, J.H., and Moore, C.H., 1990. 234U-238U-230Th-232Th systematics in saline groundwaters from central Missouri. Earth Planet. Sci. Lett., 101: 296-312.

Barg, E., Lal, D., Jull, A.J.T, Southon, J., Caffee, M.W., Finkel, R.C., and Pavich, M., 1992. Applications of cosmogenic nuclear methods for studying soil erosion and formation rates. In: Y.K. Kharaka and A.S. Maest (Eds), Water-Rock Interaction, Proceedings of the 7th International Symposium on Water-Rock Interaction. Balkema Publishers, Rotterdam, p. 541-543.

Bassett, R.L., 1990. A critical evaluation of the available measurements for the stable isotopes of boron. Appl. Geochem., 5: 541-554.

Beasley, T.M., Cecil, L.D., Sharma, P., Kubik, P.W., Fehn, U., Mann, L.J., and Gove, H.E., 1993. Chlorine-36 in the Snake River Plain aquifer at the Idaho National Engineering Laboratory: Origin and implications. Groundwater, 31: 302-310.

Ben Othman, D., Luck, J.-M., Tournoud, M.-G., 1997. Geochemistry and water dynamics: Application to short time-scale flood phenomena in a small Mediterranean catchment I. Alkalis, alkali-earths and Sr isotopes. Chem. Geol. (Iso. Geo. Sect.), 140: 9-28.

Bentley, H.W., Phillips, F.M., and Davis, S.N., 1986a. Chlorine-36 in the terrestrial environment. In: P. Fritz and J.-Ch. Fontes (Editors), Handbook of Environmental Geochemistry. Elsevier, Amsterdam. p. 427-480.

Bentley, H.W., Phillips, F.M., Davis, S.N., Gifford, S., Elmore, D., Tubbs, L.E., and Gove, H.E., 1982. Thermonuclear 36Cl pulse in natural waters. Nature, 300: 737-740.

Bentley, H.W., Phillips, F.M., Davis, S.N., Hebermehl, M.A., Airey, P.L., Calf, G.E., Elmore, D., Gove, H.E., and Torgersen, T., 1986b. Chlorine-36 dating of very old groundwater 1. The Great Artesian Basin, Australia. Water Resour. Res., 22: 1991-2001.

Bernat, M., Bokilo, J.E., Yiou, F., Raisbeck, G.M., and Muller, J.-P., 1990. 10Be and natural isotopes of U and Th in a laterite cover from Camaroon. Chem. Geol. (Iso. Geo. Sect.), 84: 347-349.

Blum, J.D., and Erel, Y., 1995. A silicate weathering mechanism linking increases in marine 87Sr/86Sr with global glaciation. Nature, 373: 415-418.

Blum, J.D., and Erel, Y., 1997. Rb-Sr isotope systematics of a granitic soil chronosequence: The importance of biotite weathering. Geochim. et Cosmochim. Acta, 61: 3193-3204.

Blum, J.D., Erel, Y., and Brown, K., 1994. 87Sr/86Sr ratios of Sierra Nevada stream waters: Implications for relative mineral weathering rates. Geochim. et Cosmochim. Acta, 58: 5019-5025.

Bowen, N.L., 1928. The Evolution of the Igneous Rocks. Princeton University Press, Princeton, N. J., 334 p.

Brown, E.T., Edmond, J.M., Raisbeck, G.M., Bourles, D.L., Yiou, F., and Measures, C.I., 1992. Beryllium isotope geochemistry in tropical river basins. Geochim. et Cosmochim. Acta, 56: 1607-1624.

Brown, E.T., Stallard, R.F., Laren, M.C., Raisbeck, G.M., and Yiou, F., 1995. Denudation rates determined from the accumulation of in situ-produced 10Be in the Luquillo experimental forest, Puerto Rico. Earth Planet. Sci. Lett., 129: 193-202.

Brown, L., Stensland, G.J., Klein, J., and Middleton, R., 1989. Atmospheric deposition of 7Be and 10Be. Geochim. et Cosmochim. Acta, 53: 135-142.

Bullen, T.D. and Kharaka, Y.K., 1992. Isotopic composition of Sr, Nd, and Li in thermal waters from the Norris-Mammoth corridor, Yellowstone National Park and surrounding region. In: Y.K. Kharaka and A.S. Maest (Editors), Water-Rock Interaction, Proceedings of the 7th International Symposium on Water-Rock Interaction. Balkema Publishers, Rotterdam, p. 897-901.

Bullen, T.D., Krabbenhoft, D.P., and Kendall, C., 1996. Kinetic and mineralogical controls on the evolution of groundwater chemistry and 87Sr/86Sr in a sandy silicate aquifer, northern Wisconsin, U.S.A.. Geochim. et Cosmochim. Acta, 60: 1807-1821.

Bullen, T.D., White, A., Blum, A., Harden, J., and Schultz, M., 1997. Chemical weathering of a soil chronosequence on granitoid alluvium: II. Mineralogical and isotopic constraints on the behavior of strontium. Geochim. et Cosmochim. Acta, 61: 291-306.

Caffee, M.W., Finkel, R.C., Nimz, G.J., Borchers, J., 1992. Isotopic composition of chlorine in groundwater from the Wawona basin, Yosemite National Park. Eos, Transaction, American Geophysical Union, 73: 173.

Capo, R.C. and Chadwick, O.A., 1993. Application of strontium isotopes to the mass balance of calcium in desert soils: Eolian input vs. in-situ weathering. Geol. Soc. Am. Abstr. Progr., 25: A-394.

Carlson, C.A., Phillips, F.M., Elmore, D., and Bentley, H.W., 1990. Chlorine-36 tracing of salinity sources in the Dry Valleys of Victoria Land, Antarctica. Geochim. et Cosmochim. Acta, 54: 311-318.

Cecil, L.D., Pitman, J.R., Beaseley, T.M., Michel, R.L., Kubik, P.W., Sharma, P., Fehn, U., and Gove, H.E., 1992. Water infiltration rates in the unsaturated zone at the Idaho National Engineering Laboratory estimated from chlorine-36 and tritium profiles, and neutron logging. In: Y.K. Kharaka and A.S. Maest (Eds), Water-Rock Interaction, Proceedings of the 7th International Symposium on Water-Rock Interaction. Balkema Publishers, Rotterdam, p. 709-714.

Chan, L-H., 1987. Lithium isotope analysis by thermal ionization mass spectrometry of lithium tetraborate. Anal. Chem., 59: 2662-2665.

Chan, L-H. and Edmond, J.M., 1988. Variations in lithium isotope composition in the marine environment: A preliminary report. Geochim. et Cosmochim. Acta, 52: 1711-1717.

Cherdyntsev, V.V., Chalov, P.I., and Khaidarov, G.Z., 1955. Transactions of the Third Session of the Committee for Determination of Absolute Ages of Geologic Formations: Izv. Nauk. SSR. for 1955: 175-199.

Christopherson, N. and Hooper, R.P., 1992. Multivariate analysis of stream water chemical data: The use of principal components analysis for the end-member mixing problem. Water Resour. Res., 28: 99-107.

Cleaves, E.T., Godfrey, A.E., Bricker, O.P., 1970. Geochemical balance of a small watershed and its geomorphic implications. Bull. Geol. Soc. Am., 81: 3015-3032.

Clemens, S.C., Farrell, J.W., and Gromet, L.P., 1993. Synchronous changes in seawater strontium isotope composition and global climate. Nature, 363: 607-610.

Clow, D.W., Mast, M.A., Bullen, T.D., and Turk, J.T., 1997. Strontium 87/strontium 86 as a tracer of mineral weathering and reactions and calcium sources in an alpine/subalpine watershed, Loch Vale, Colorado. Water Resour. Res., 33: 1335-1351.

Collerson, K.D., Ullman, W.J., and Torgersen, T., 1988. Ground waters with unradiogenic 87Sr/86Sr ratios in the Great Artesian Basin, Australia. Geology, 16: 59-63.

Connolly, C.A., Walter, L.M., Baadsgaard, H., and Longstaffe, F.J., 1990. Origin and evolution of formation waters, Alberta Basin, western Canada sedimentary basin. II. Isotope systematics and water mixing. Appl. Geochem., 5: 397-413.

Cook, P.G., Jolly, I.D., Leaney, F.W., Walker, G.R., Allan, G.L., Fifield, L.K., and Allison, G.B., 1994. Unsaturated zone tritium and chlorine-36 profiles from southern Australia: Their use as tracers of soil water movement, Water Resour. Res., 30: 1709-1719.

Cornett, R.J., Andrews, H.R., Chant, L.A., Davies, W.G., Greiner, B.F., Imahori, Y., Koslowsky, V.T., Kotzer, T., Milton, J.C.D., and Milton, G.M., 1997. Is 36Cl from weapons test fallout still cycling in the atmosphere? Nucl. Instr. Meth. Phys. Res., B123:378-381.

Curtis, C.D., 1976. Stability of minerals in surface weathering reactions: A general thermochemical approach. Earth Surf. Processes, 1: 63-70.

Cuttell, J.C., Lloyd, J.W., and Ivanovich, M., 1986. A study of uranium and thorium series isotopes in Chalk groundwaters of Lincolnshire, U.K.. Jour. Hydrol., 86: 343-365.

Cuttell, J.C., Ivanovich, M., Tellam, J.H., and Lloyd, J.W., 1988. Uranium-series isotopes in the groundwater of the Permo-Triassic sandstone aquifer, Lower-Mercey Basin, U.K.. Appl. Geochem., 3: 255-271.

DePaolo, D.J., 1988. Neodymium Isotope Geochemistry, An Introduction. Springer-Verlag, Berlin, 187 p.

Desaulniers, D.E., Kaufmann, R.S., Cherry, J.A., and Bentley, H.W., 1986. 37Cl-35Cl variations in a diffusion-controlled groundwater system. Geochim. et Cosmochim. Acta, 50: 1757-1764.

DeWalle, D.R., Swistock, B.R., and Sharpe, W.E., 1988. Three-component tracer model for stormflow on a small Appalachian forested catchment. Jour. Hydrol., 104: 301-310.

Dibb, J.E., Meeker, L.D., Finkel, R.C., Southon, J.R., Caffee, M.W., and Barrie, L.A., 1994. Estimation of stratospheric input to the Arctic troposphere: 7Be and 10Be in aerosols at Alert, Canada. Jour. Geophysical Res., 99: 12855-12864.

Dominik, J., Burrus, D., and Vernet, J.-P., 1987. Transport of environmental radionuclides in an alpine watershed. Earth Planet. Sci. Lett., 84: 165-180.

Dowgiallo, J., Nowicki, Z., Beer, J., Bonani, G., Suter, M., Synal, H.A., and Wolfli, W., 1990. 36Cl in ground water of the Mazowsze basin (Poland). Jour. Hydrol., 118: 373-385.

Drever, J.I., 1988. The Geochemistry of Natural Waters. Second Edition. Prentice-Hall, Englewood Cliffs, New Jersey, 437 p.

Drever, J.I. and Hurcomb, D.R., 1986. Neutralization of atmospheric acidity by chemical weathering in an alpine drainage basin in the North Cascade Mountains. Geology, 14: 221-224.

Eastoe, C.J., Guilbert, J.M., and Kaufmann, R.S., 1989. Preliminary evidence for fractionation of stable chlorine isotopes in ore-forming systems. Geology, 17: 285-288.

Eisenhut, S., Heumann, K.G., and Vengosh, A., 1996. Determination of boron isotopic variations in aquatic systems with negative thermal ionization mass spectrometry as a tracer for anthropogenic influences. Fresnius Jour. Anal. Chem., 354: 903-909.

Ekwurzel, B., Schlosser, P. Smethie, W.M., Plummer, L.N., Busenberg, E., Michel, R.L., Wappernig, R., and Stute, M., 1994. Dating of shallow groundwater: Comparison of the transient tracers 3H/3He, chlorofluorocarbons, and 85Kr. Water Resour. Res., 30: 1693-1708.

Erel, Y., Patterson, C.C., Scott, M.J., and Morgan, J.J., 1990. Transport of industrial lead in snow through soil to stream water and groundwater. Chem. Geol. (Iso. Geo. Sect.), 85: 383-392.

Erel, Y., Morgan, J.J., Patterson, C.C., 1991. Natural levels of lead and cadmium in a remote mountain stream. Geochim. et Cosmochim. Acta, 55: 707-719.

Fabryka-Martin, J., Davis, S.N., Elmore, D., and Kubik, P.W., 1989. In-situ production and migration of 129I in the Stripa granite, Sweden. Geochim. et Cosmochim. Acta, 53: 1817-1823.

Fabryka-Martin, J., Whittemore, D.O., Davis, S.N., Kubik, P.W., and Sharma, P., 1991. Geochemistry of halogens in the Milk River aquifer, Alberta, Canada. Appl. Geochem., 6: 447-464.

Fabryka-Martin, J., Bentley, H., Elmore, D., and Airey, P.L., 1985. Natural iodine-129 as an environmental tracer. Geochim. et Cosmochim. Acta, 49: 337-347.

Fabryka-Martin, J., Davis, S.N., Roman, D., Airey, P.L., Elmore, D., and Kubik, P.W., 1988. Iodine-129 and chlorine-36 in uranium ores 2. Discussion of AMS measurements. Chem. Geol. (Iso. Geo. Sect.), 72: 7-16.

Fehn, U., Tullai, S., Yeng, R.T.D., Elmore, D., and Kubik, P.W., 1987. Determination of 129I in heavy residues of two crude oils. Nucl. Instr. Meth. Phys. Res., B29: 380-382.

Fehn, U., Peters, E.K., Tullai-Fitzpatrick, S., Kubik, P.W., Sharma, P., Teng, R.T.D., Gove, H.E., and Elmore, D., 1992. 129I and 36Cl concentrations in waters of the eastern Clear Lake area, California: Residence times and source ages of hydrothermal fluids. Geochim. et Cosmochim. Acta, 56: 2069-2079.

Flegal, A.R., Duda, T.F., and Neimayer, S., 1989. High gradients of Pb isotopic composition in north-east Pacific upwelling filaments. Nature, 339: 458-460.

Flegal, A.R., Maring, H., and Neimayer, S., 1993. Anthropogenic lead in antarctic sea water. Nature, 365: 242-244.

Fleischer, R.L., 1982. Alpha-recoil damage and solution effects in minerals: Uranium isotopic disequilibrium and radon release. Geochim. et Cosmochim. Acta, 46: 2191-2201.

Fleischer, R.L., 1983. Theory of alpha recoil effects on radon release and isotopic disequilibrium. Geochim. et Cosmochim. Acta, 47: 779-784.

Fleischer, R.L., 1988. Alpha-recoil damage: Relation to isotopic disequilibrium and leaching of radionuclides. Geochim. et Cosmochim. Acta, 52: 1459-1466.

Fritz, S.J. and Whitworth, T.M., 1994. Hyperfiltration-induced fractionation of lithium isotopes: Ramifications relating to representativeness of aquifer sampling, Water Resour. Res., 30: 225-235.

Fröhlich, K. and Gellerman, R., 1987. On the potential use of uranium isotopes for groundwater dating. Chem. Geol. (Iso. Geo. Sect.), 65: 67-77.

Garrels, R.M. and MacKenzie, F.T., 1967. Origin of the chemical compositions of some springs and Lakes. In: R.F. Gould (Ed), Equilibrium Concepts in Natural Water Systems. (Advances in Chemistry Series 67). American Chemical Society, Washington, D.C., p. 222-242.

Garrels, R.M. and MacKenzie, F.T., 1971. Evolution of Sedimentary Rocks. W.W. Norton and Co., New York, 397 p.

Goldich, S.S., 1938. A study of rock weathering. Jour. Geology, 46: 17-58.

Goldstein, S.J. and Jacobsen, S.B., 1987. The Nd and Sr isotopic systematics of river-water dissolved material: Implications for the sources of Nd and Sr in seawater. Chem. Geol. (Iso. Geo. Sect.), 66: 245-272.

Graustein, W.C. and Armstrong, R.L., 1980. The use of strontium-87/strontium-86 ratios to measure atmospheric transport into forested watersheds. Science, 219: 289-292.

Guthrie, V., 1991. Determination of recent 238U, 234U, and 230Th mobility in granitic rocks: Application of a natural analogue to the high-level waste repository environment. Appl. Geochem., 6: 63-74.

Guttman, J. and Kronfeld, J., 1982. Tracing interaquifer connections in the Kefar Uriyya-Agur region (Israel), using natural uranium isotopes. Jour. Hydrol., 55: 145-150.

Haberstock, G., Heinzl, J., Korschinek, G., Morinaga, H., Nolte, E., Ratzinger, U., Kato, K., and Wolf, M., 1986. Accelerator mass spectrometry with heavy ions. Nucl. Instr. Meth. Phys. Res., B17: 385-389.

Hedenquist, J.W., Goff, F., Phillips, F.M., Elmore, D., and Stewart, M.K., 1990. Groundwater dilution and residence times, and constraints on chloride source, in the Mokai geothermal system, New Zealand, from chemical, stable isotope, tritium, and 36Cl data. Jour. Geophysical Res., 95: 19365-19375.

Helgeson, H.C., Garrels, R.M., and MacKenzie, F.T., 1969. Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions: II. Applications. Geochim. et Cosmochim. Acta, 33: 455-481.

Hem, J.D., 1989. Study and Interpretation of the Chemical Characteristics of Natural Water. U.S. Geological Survey Water-Supply Paper 2254. 264 p.

Hooper, R.P., Christopherson, N., and Peters, N.E., 1990. Modeling streamwater chemistry as a mixture of soilwater endmembers - An application to the Panola Mountain catchment, Georgia, USA. Jour. Hydrol., 116: 321-343.

Huang, H.W., Maurette, M., and Walker, R.M., 1967. Observation of fossil -particle recoil tracks and their implications for dating measurements. In: Radioactive dating and Methods of Low Level Counting, IAEA, Vienna,. p. 415-419.

Hudson, G.B., Davisson, M.L., Nimz, G.J., Bohlke, J.K., and Borchers, J.W., 1993. Isotopic segregation of ground water in the fractures granitic rocks at Wawona, Yosemite National Park, California. Eos, Transaction, American Geophysical Union, 74: 582.

Ivanovich, M. and Alexander, J., 1987. Application of uranium-series disequilibrium to studies of groundwater mixing in the Harwell region, U.K.. Chem. Geol. (Iso. Geo. Sect.), 66: 279-291.

Ivanovich, M., Fröhlich, K., and Hendry, M.J., 1991. Uranium-series radionuclides in fluids and solids, Milk River aquifer, Alberta, Canada. Appl. Geochem., 6: 405-418.

Jannik, N.O., Phillips, F.M., Smith, G.I., and Elmore, D., 1991. A 36Cl chronology of lacustrian sedimentation in the Pleistocene Owens River system. Bull. Geol. Soc. Am., 103: 1146-1159.

Johnson, T.M. and DePaolo, D.J., 1997. Rapid exchange effects on isotope ratios in groundwater systems, 2. Flow investigation using Sr isotope ratios. Water Resour. Res., 33: 197-210.

Junge, C.E. and Werby, R.T., 1958. The concentration of chloride, sodium, potassium, calcium, and sulfate in rain water over the United States. Jour. of Meteorology, 15: 417-425.

Katz, B.G. and Bullen, T.D., 1996. The combined use of 87Sr/86Sr and carbon and water isotopes to study the hydrochemical interaction between groundwater and lakewater in mantled karst. Geochim. et Cosmochim. Acta, 60: 5075-5087.

Kaufmann, R., Long, A., Bentley, H., Davis, S., 1984. Natural chlorine isotope variation. Nature, 309: 338-340.

Kaufmann, R., Frape, S.K., McNutt, R., and Eastoe, C., 1993. Chlorine stable isotope distribution of Michigan Basin formation waters. Appl. Geochem., 8: 403-407.

Kigoshi, K., 1971. Alpha-recoil 234Th: Dissolution into water and the 234U/238U disequilibrium in nature. Science, 173: 47-48.

Knies, D.L., Elmore, D., Sharma, P., Vogt, S., Li, R., Lipshutz, M.E., Petty, G., Ferrel, J., Monagham, M.C., Fritz, S., and Agee, E., 1994. 7Be, 10Be, and 36Cl in precipitation. Nucl. Instr. Meth. Phys. Res., B92: 340-344.

Kraemer, T.F. and Kharaka, Y.K., 1986. Uranium geochemistry in geopressures-geothermal aquifers of the U.S. Gulf Coast. Geochim. et Cosmochim. Acta, 50: 1233-1238.

Krishnaswami, S., Graustein, W.C., Turekian, K.K., and Dowd, J.F., 1982. Radium, thorium and radioactive lead isotopes in groundwaters: Application to the in-situ determination of adsorption-desorption rate constants and retardation factors. Water Resour. Res., 18: 1663-1675.

Kronfeld, J. and Adams, J.A.S., 1974. Hydrologic investigations of the groundwaters of central Texas using U-234/U-238 disequilibrium. Jour. Hydrol., 22: 77-88.

Kronfeld, J. and Rosenthal, E., 1981. Uranium isotopes as a natural tracer in the waters of the Bet-Shean-Harod Valleys, Israel. Jour. Hydrol., 50: 179-190.

Kronfeld, J., Gradsztajn, E., and Yaniv, A., 1979. A flow pattern deduced from uranium disequilibrium studies for the Cenomanian carbonate aquifer of the Beersheva region, Israel. Jour. Hydrol., 44: 305-310.

Kutschera, W., 1990. Accelerator mass spectrometry: A versatile tool for research. Nucl. Instr. Meth. Phys. Res., B50: 252-261.

Langmuir, D., 1978. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim. et Cosmochim. Acta, 42: 547-569.

Latham, A.G. and Schwarcz, H.P., 1989. Review of the modeling of radionuclide transport from U-series disequilibria and of its use in assessing the safe disposal of nuclear waste in crystalline rock. Appl. Geochem., 4: 527-537.

Leeman, W.P., Vocke, R.D., and McKibben, M.A., 1992. Boron isotopic fractionation between coexisting vapor and liquid in natural geothermal systems. In: Y.K. Kharaka and A.S. Maest (Eds), Water-Rock Interaction, Proceedings of the 7th International Symposium on Water-Rock Interaction. Balkema Publishers, Rotterdam, p. 1007-1010.

Lehmann, B.E. and Loosli, H.H., 1991. Chapter 6. Isotopes formed by underground production. In: F.J.Pearson et al. (Eds), Applied Isotope Hydrogeology, A Case Study in Northern Switzerland. Studies in Environmental Science 43. Elsevier, Amsterdam, 439 p.

Lowry, R.M., Faure, G., Mullet, D.I., and Jones, L.M., 1988. Interpretation of chemical and isotopic compositions of brines based on mixing and dilution, "Clinton" sandstones, eastern Ohio, USA. Appl. Geochem., 3: 177-184.

Liu, B., Phillips, F.M., Hoines, S., Campbell, A.R., and Sharma, P., 1995. Water movement in desert soil traced by hydrogen and oxygen isotopes, chloride, and chlorine-36, southern Arizona. Jour. Hydrol., 168: 91-110.

Lyons, W.B., Tyler, S.W., Gaudette, H.E., and Long, D.T., 1995. The use of strontium isotopes in determining groundwater mixing and brine fingering in a playa spring zone, Lake Tyrrell, Australia. Jour. Hydrol., 167: 225-239.

Magaritz, M., Kaufman, A., Paul, M., Boaretto, E., and Holos, G., 1990. A new method to determine regional evapotranspiration. Water Resour. Res., 26: 1759-1762.

Magaritz, M., Kaufman, A., Levy, Y., Fink, D., Meirav, O., and Paul, M., 1986. 36Cl in a halite layer from the bottom of the Dead Sea. Nature, 320: 256-257.

Mast, M.A., Drever, J.I., and Baron, J., 1990. Chemical weathering in the Loch Vale Watershed, Rocky Mountain National Park, Colorado. Water Resour. Res., 26: 2971-2978.

McNutt, R.H., 1987. 87Sr/86Sr ratios as indicators of water/rock interactions: Application to brines found in Precambrian age rocks from Canada. In: P. Fritz and S.K. Frape (Eds), Saline Water and Gases in Crystalline Rocks. Geol. Assoc. Canada Special Paper 33, p. 81-88.

McNutt, R.H., Frape, S.K., and Fritz, P., 1984. Strontium isotopic composition of some brines from the Precambrian shield of Canada. Chem. Geol. (Iso. Geo. Sect.), 2: 205-215.

Miller, W.R. and Drever, J.I., 1977a. Chemical weathering and related controls on surface water chemistry in the Absaroka Mountains, Wyoming. Geochim. et Cosmochim. Acta, 41: 1693-1702.

Miller, W.R. and Drever, J.I., 1977b. Water chemistry of a stream following a storm, Absaroka Mountains, Wyoming. Bull. Geol. Soc. Am., 88: 286-290.

Milton, J.C.D., Milton, G.M., Andrews, H.R., Chant, L.A., Cornett, R.J.J., Davies, W.G., Greiner, B.F., Imahori, Y., Koslowsky, V.T., Kotzer, T., Kramer, S.J., and McKay, J.W., 1997. A new interpretation of the distribution of bomb-produced chlorine-36 in the environment, with special reference to the Laurentian Great Lakes. Nucl. Instr. Meth. Phys. Res., B123: 382-386.

Moldovanyi, E.P., Walter, L.M., and Land, L.S., 1993. Strontium, boron, oxygen, and hydrogen isotope geochemistry of brines from basal strata of the Gulf Coast sedimentary basin, USA. Geochim. et Cosmochim. Acta, 57: 2083-2099.

Moran, J.E., Fehn, U., and Hanor, J.S., 1993. Iodine-129 as a tracer for brine migration in the Louisiana Gulf Coast. Geol. Soc. Am. Abstr. Progr., 25: A-90.

Morozova, I.M. and Alferovskiy, A.A., 1974. Fractionation of lithium and potassium isotopes in geological processes. Geochem. Int., 11: 17-25.

Musgrove, M. and Banner, J.L., 1993. Regional ground-water mixing and the origin of saline fluids: Midcontinent, United States. Science, 259: 1877-1882.

Nabelek, P.I., 1987. General equations for modeling fluid-rock interaction using trace elements and isotopes. Geochim. et Cosmochim. Acta, 51: 1765-1769.

Nakano, T., Kajiwara, Y., Farrell, C.W., 1989. Strontium isotope constraint on the genesis of crude oils, oil-field brines, and Kuroko ore deposits from the Green Tuff region of northeastern Japan. Geochim. et Cosmochim. Acta, 53: 2683-2688.

Negrel, P., Fouillac, C., and Branch, M., 1997. A strontium isotopic study of mineral and surface waters from the Cezallier (Massif Central, France): Implications for mixing processes in area of disseminated emergences af mineral waters. Chem. Geol. (Iso. Geo. Sect.), 135: 89-101.

Nimz, G.J., Smith, D.K., Caffee, M.W., Finkel, R.C., Hudson, G.B., Borchers, J.W., and Nimz, K.P., 1992. Isotopic characterization of hydrologic structure and chemical interaction between groundwater and granitic rock in the Wawona basin, Yosemite National Park. Eos, Transaction, Am. Geophys. Union, 73: 170.

Nimz, G.J., Caffee, M.W., and Borchers, J.W., 1993. Extremely low 36Cl/Cl values in deep ground water at Wawona, Yosemite National Park, California: Evidence for rapid upwelling of deep crustal waters? Eos, Transaction, Am. Geophys. Union, 74: 582.

Nimz, G.J., Moore, J.N., Kassameyer, P.W., 1997. 36Cl/Cl ratios in geothermal systems: Preliminary measurements from the Coso field. Geothermal Resources Council Transactions, 21: 211-217.

Nolte, E., Krauthan, P., Korschinek, G., Moloszewski, P., Fritz, P., and Wolf, M., 1991. Measurements and interpretations of 36Cl in groundwater, Milk River aquifer, Alberta, Canada. Appl. Geochem., 6: 435-445.

Norris, A.E., Wolfsberg, K., Gifford, S.K., Bentley, H.W., and Elmore, D., 1987. Infiltration at Yucca Mountain, Nevada, traced by 36Cl. Nucl. Instr. Meth. Phys. Res., B29: 376-379.

Oi, T., Nomura, M., Musashi, M., Ossaka, T., Okamoto, M., and Kakihana, H., 1989. Boron isotopic compositions of some boron minerals. Geochim. et Cosmochim. Acta, 53: 3189-3195.

Osmond, J.K., Cowart, J.B., and Ivanovich, M., 1983. Uranium isotopic disequilibrium in ground water as an indicator of anomalies. Int. Jour. Appl. Radiat. Isot., 34: 283-308.

Palmer, M.R. and Sturchio, N.C., 1990. The boron isotope systematics of the Yellowstone National Park (Wyoming) hydrothermal system: A reconnaissance. Geochim. et Cosmochim. Acta, 54: 2811-2815.

Paul, M., Kaufman, A., Magaritz, M., Fink, D., Henning, W., Kaim, R., Kutschera, W., and Meirav, O., 1986. A new 36Cl hydrologic model and 36Cl systematics in the Jordan River/Dead Sea system. Nature, 321: 511-515.

Pauling, L., 1960. The Nature of the Chemical Bond. Third Edition. Cornell University Press, Ithaca, New York, 450 p.

Pavich, M.J., Brown, L., Valette-Silver, J.N., Klein, J., and Middleton, R., 1985. 10Be analysis of a Quaternary weathering profile in the Virginia Peidmont. Geology, 13: 39-41.

Pearce, A.J., Stewart, M.K., and Sklash, M.G., 1986. Storm runoff generation in humid headwater catchments, 1, Where does the water come from? Water Resour. Res., 22: 1263-1278.

Perkins, R.W., Thomas, C.Q., and Young, J.A., 1970. Application of short-lived cosmogenic radionuclides as tracers of in-cloud scavenging processes. Jour. Geophysical Res., 75: 3076-3087.

Peterman, Z.E., Stuckless, J.S., Mahan, S.A., Marshall, B.D., Gutentag, E.D., and Downey, J.S., 1992. Strontium isotope characterization of the Ash Meadows ground-water system, southern Nevada, USA. In: Y.K. Kharaka and A.S. Maest (Eds), Water-Rock Interaction, Proceedings of the 7th International Symposium on Water-Rock Interaction. Balkema Publishers, Rotterdam, p. 825-829.

Pettijohn, F.J., 1975. Sedimentary Rocks. Third Edition. Harper and Row, New York, 628 p.

Phillips, F.M., Goff, F., Vuataz, F., Bentley, H.W., Elmore, D., and Gove, H.E., 1984. 36Cl as a tracer in geothermal systems: Example from Valles caldera, New Mexico. Geophys. Res., Lett., 11: 1227-1230.

Phillips, F.M., Bentley, H.W., Davis, S.N., Elmore, D., and Swanick, G., 1986. Chlorine-36 dating of very old groundwater 2. Milk River aquifer, Alberta, Canada. Water Resour. Res., 22: 2003-2016.

Phillips, F.M., Mattick, J.L., Duval, T.A., Elmore, D., and Kubik, P.W., 1988. Chlorine-36 and tritium from nuclear weapons fallout as tracers for long-term liquid and vapor movement in desert soils. Water Resour. Res., 24: 1877-1891.

Phillips, F.M., Rogers, D.B., Dreiss, S.J., Jannik, N.O., and Elmore, D., 1995. Chlorine 36 in Great Basin waters: Revisited. Water Resour. Res., 31: 3195-3204.

Piepgras, D.J. and Wasserberg, G.J., 1985. Strontium and neodymium isotopes in hot springs on the East Pacific Rise and Guaymas Basin. Earth Planet. Sci. Lett., 72: 341-356.

Plummer, L.N. and Back, W., 1980. The mass balance approach: Application to interpreting the chemical evolution of hydrologic systems. Am. Jour. Sci. 280: 130-142.

Plummer, L.N., Prestemon, E.C., and Parkhurst, D.L., 1991a. An interactive code (NETPATH) for modeling net geochemical reactions along a flow path. U.S. Geological Survey Water-Resources Investigations Report 91-4078.

Plummer, L.N., Prestemon, E.C., and Parkhurst, D.L., 1992. NETPATH: An interactive code for interpreting NET geochemical reactions from chemical and isotopic data along a flow PATH. In: Y.K. Kharaka and A.S. Maest (Eds), Water-Rock Interaction, Proceedings of the 7th International Symposium on Water-Rock Interaction. Balkema Publishers, Rotterdam, p. 239-242.

Plummer, L.N., Busby, J.F., Lee, R.W., Hanshaw, B.B., 1991b. Geochemical modeling of the Madison aquifer in parts of Montana, Wyoming, and South Dakota. Water Resour. Res., 26: 1981-2014.

Plummer, L.N., Parkhurst, D.L., Thorstenson, D.C., 1983. Development of reaction models for groundwater systems. Geochim. et Cosmochim. Acta, 47: 665-685.

Plummer, M.A., Phillips, F.M., Fabryka-Martin, J., Turin, H.J., Wigand, P.E., and Sharma, P., 1997. Chlorine-36 in fossil rat urine: An archive of cosmogenic nuclide deposition during the past 40,000 years. Science, 277: 538-541.

Purdy, C.B., Mignerey, A.C., Helz, G.R., Drummond, D.D., Kubik, P.W., Elmore, D., and Hemmick, T., 1987. 36Cl: A tracer in groundwaters in the Aquia Formation of southern Maryland. Nucl. Instr. Meth. Phys. Res., B29: 372-375.

Purdy, C.B., Helz, G.R., Mignerey, A.C., Kubik, P.W., Elmore, D., Sharma, P., and Hemmick, T., 1996. Aquia aquifer dissolved Cl– and 36Cl/Cl: Implications for flow velocities. Water Resour. Res., 32: 1163-1171.

Quade, J., Chivas, A.R., McCulloch, M.T., 1995. Strontium and carbon isotope tracers and the origins of soil carbonate in south Australia and Victoria. Palaeogeog. Palaeoclim. Palaeoecol., 113: 103-117.

Raisbeck, G.M., Yiou, F., Zhou, Z.Q., and Kilius, L.R., 1995. 129I from nuclear reprocessing facilities at Sellafield (U.K.) and La Hague (France); potential as an oceanographic tracer. Jour. Marine Systems, 6: 561-570.

Robson, A. and Neal, C., 1990. Hydrograph separation using chemical techniques: An application to catchments in mid-Wales. Jour. Hydrol., 116: 345-363.

Roedel, W., 1970. Cosmic-ray-produced sodium 24 and other nuclides in the lower atmosphere. Jour. Geophysical Res., 75: 3033-3038.

Roman, D and Fabryka-Martin, J., 1988. Iodine-129 and chlorine-36 in uranium ores 1. Preparation of samples for analysis by AMS. Chem. Geol. (Iso. Geo. Sect.), 72: 1-6.

Scanlon, B. R., 1992. Evaluation of liquid and vapor water flow in desert soils based on chlorine 36 and tritium tracers and nonisothermal flow simulations. Water Resour. Res., 28: 285-297.

Schwarcz, H.P., Agyei, E.K., and McMullen, C.C., 1969. Boron isotopic fractionation during adsorption from seawater. Earth Planet. Sci. Lett., 6: 1-5.

Sklash, M.G., Stewart, M.K., and Pearce, A.J., 1986. Storm runoff generation in humid headwater catchments 2. A case study of hillslope and low-order stream response. Water Resour. Res., 22: 1273-1282.

Smalley, P.C., Lonoy, A., and Raheim, A., 1992. Spatial 87Sr/86Sr variations in formation water and calcite from the Ekofisk chalk oil field: Implications for reservoir connectivity and fluid composition. Appl. Geochem., 7: 341-350.

Smalley, P.C., Raheim, A., Dickson, J.A.D., and Emery, D., 1988. 87Sr/86Sr in waters from the Lincolnshire Limestone aquifer, England, and the potential of natural strontium isotopes as a tracer for a secondary recovery seawater injection process in oilfields. Appl. Geochem., 3: 591-600.

Smethie, W.M., Solomon, D.K., Schiff, S.L., and Mathieu, G.G., 1992. Tracing groundwater flow in the Borden aquifer using krypton-85, Jour. Hydrol., 130: 279-297.

Spivack, A.J., 1985. Boron isotope marine geochemistry. Conf. Int. Les Isotopes dans le Cycle Sedimentaire, Obernai. Cited in: J. Hoefs, 1987. Stable Isotope Geochemistry, Third Ed. Springer-Verlag, Berlin, 241 p.

Spivack, A.J. and Edmond, J.M., 1987. Boron isotope exchange between seawater and ocean crust. Geochim. et Cosmochim. Acta, 51: 1033-1044.

Spivack, A.J., Berndt, M.E., and Seyfried, W.E., Jr., 1990. Boron isotope fractionation during supercritical phase separation. Geochim. et Cosmochim. Acta, 54: 2337-2339.

Spivack, A.J., Palmer, M.R., and Edmond, J.M., 1987. The sedimentary cycle of the boron isotopes. Geochim. et Cosmochim. Acta, 51: 1939-1949.

Starinsky, A., Bielski, M., Ecker, A., and Steinitz, G., 1983b. Tracing the origin of salts in groundwater by Sr isotopic composition, The crystalline complex of the southern Sinai, Egypt. Chem. Geol. (Iso. Geo. Sect.), 1: 257-267.

Starinsky, A., Bielski, M., Lazar, B., Steinitz, G., and Raab, M., 1983a. Strontium isotope evidence on the history of oilfield brines, Mediterranean Coastal Plain, Israel. Geochim. et Cosmochim. Acta, 47: 687-695.

Stauffer, R.E. and Wittchen, B.D., 1991. Effects of silicate weathering on water chemistry in forested, upland, felsic terrane of the USA. Geochim. et Cosmochim. Acta, 55: 3253-3271.

Stueber, A.M., Walter, L.M., Huston, T.J., and Pushkar, P., 1993. Formation waters from Mississippian-Pennsylvanian reservoirs, Illinois basin, USA: Chemical and isotopic constraints on evolution and migration. Geochim. et Cosmochim. Acta, 57: 763-784.

Stueber, A.M., Pushkar, P., and Hetherington, E.A., 1987. A strontium isotopic study of formation waters from the Illinois basin, USA. Appl. Geochem., 2: 477-494.

Swihart, G.H., Moore, P.B., and Callis, E.L., 1986. Boron isotopic composition of marine and non-marine evaporite borates. Geochim. et Cosmochim. Acta, 50: 1297-1301.

Taylor, H.P., 1977. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ. Geol., 69: 843-883.

Taylor, S.R. and McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford, 312 p.

Torgersen, T., Habermehl, M.A., Phillips, F.M., Elmore, D., Kubik, P., Jones, B.G., Hemmick, T., and Gove, H.E., 1991. Chlorine 36 dating of very old groundwater 3. Further studies in the Great Artesian Basin, Australia. Water Resour. Res., 27: 3201-3213.

Turekian, K.K., 1968. Oceans. Prentice-Hall, Englewood Cliffs, New Jersey, 120 p.

Vengosh, A., Chivas, A.R., McCulloch, M.T., Starinsky, A., and Kolodny, Y., 1991a. Boron isotope geochemistry of Australian salt lakes. Geochim. et Cosmochim. Acta, 55: 2591-2606.

Vengosh, A., Starinsky, A., Kolodny, Y., and Chivas, A.R., 1991b. Boron isotope geochemistry as a tracer for the evolution of brines and associated hot springs from the Dead Sea, Israel. Geochim. et Cosmochim. Acta, 55: 1689-1695.

Vengosh, A., Starinsky, A., Kolodny, Y., Chivas, A.R., and Raab, M., 1992. Boron isotope variations during fractional evaporation of sea water: New constraints on the marine vs. nonmarine debate. Geology, 20: 799-802.

Vengosh, A., Heumann, K.G., Juraske, S., and Kasher, R., 1994a. Boron isotope application for tracing sources of contamination in groundwater. Env. Sci. Techn., 28: 1968-1974.

Vengosh, A., Starinsky, A., Kolodny, Y., Chivas, A.R., 1994b. Boron isotope geochemistry of thermal springs from the northern Rift Valley, Israel. Jour. Hydrol., 162: 155-169.

Vengosh, A., Chivas, A.R., Starinsky, A., Kolodny, Y., Baozhen, Z., Pengxi, Z., 1995. Chemical and boron isotope compositions of non-marine brines from the Qaidam Basin, Qinghai, China. Chem. Geol. (Iso. Geo. Sect.), 120: 135-154.

Veron, A.J., Church, T.M., Patterson, C.C., and Flegal, A.R., 1994. Use of stable lead isotopes to characterize the sources of anthropogenic lead in north Atlantic surface waters. Geochim. et Cosmochim. Acta, 58: 3199-3206.

Wagner, M.J.M, Dittrich-Hannon, B., Synal, H.-A., Suter, M., and Schotterer, U., 1996. Increase of 129I in the environment. Nucl. Instr. Meth. Phys. Res., B113: 490-494.

Wedepohl, K.H., 1969. Handbook of Geochemistry. Springer-Verlag, Berlin.

Wels, C., Cornett, R.J., and Lazerte, B.D., 1991. Hydrograph separation: A comparison of geochemical and isotopic tracers. Jour. Hydrol., 122: 253-274.

White, A.F., Blum, A.E., Bullen, T.D., Peterson, M.L., Schulz, M.S., and Harden, J.W., 1992. A three million year weathering record for a soil chronosequence developed in granitic alluvium, Merced, California, USA. In: Y.K. Kharaka and A.S. Maest (Eds), Water-Rock Interaction, Proceedings of the 7th International Symposium on Water-Rock Interaction. Balkema Publishers, Rotterdam, p. 607-610.

White, A.F., Blum, A.E., Schultz, M.S., Bullen, T.D., Harden, J.W., and Peterson, M.L., 1996. Chemical weathering rates of a soil chronosequence on granitic alluvium: I. Quantification of mineralogical and surface area changes and calculation of primary silicate reaction rates. Geochim. et Cosmochim. Acta, 60: 2533-2550.

Whitehead, K., Ramsey, M.H., Maskall, J., Thornton, I., and Bacon, J.R., 1997. Determination of the extent of anthroprogenic Pb migration through fractured sandstone using Pb isotopes tracing. Appl. Geochem., 12: 75-81.

Wickman, T. and Jacks, G., 1992. Strontium isotopes in weathering budgeting. In: Y.K. Kharaka and A.S. Maest (Eds),

Water-Rock Interaction, Proceedings of the 7th International Symposium on Water-Rock Interaction. Balkema Publishers, Rotterdam, p. 611-614.

Williams, A.E., and McKibben, M.A., 1989. A brine interface in the Salton Sea Geothermal System, California: Fluid geochemical and isotopic characteristics. Geochim. et Cosmochim. Acta, 53: 1905-1920.

Wilson, G.V., Jardine, P.M., Luxmoore, R.J., Zelazny, L.W., Lietzke, D.A., and Todd, D.E., 1991a. Hydrogeochemical processes controlling subsurface transport from an upper subcatchment of Walker Branch watershed during storm events. 1. Hydrologic transport processes. Jour. Hydrol., 123: 297-316.

Wilson, G.V., Jardine, P.M., Luxmoore, R.J., Zelazny, L.W., Todd, D.E., and Lietzke, D.A., 1991b. Hydrogeochemical processes controlling subsurface transport from an upper subcatchment of Walker Branch watershed during storm events. 2. Solute transport processes. Jour. Hydrol., 123: 317-336.

Yechieli, Y., Ronen, D., and Kaufman, A., 1996. The source and age of groundwater brines in the Dead Sea area, as deduced from 36Cl and 14C. Geochim. et Cosmochim. Acta, 60:1909-1916.

Xiao, Y., Sun, D., Wang, Y., Qi, H., and Jin, L., 1992. Boron isotopic compositions of brine, sediments, and source water in Da Qaidam Lake, Qinghai, China. Geochim. et Cosmochim. Acta, 56: 1561-1568.

Xiao, Y.K. and Beary, E.S., 1989. High-precision isotopic measurement of lithium by thermal ionization mass spectrometry. Int. Jour. Mass Spec. Ion Proc., 94: 101-114.


The URL of this page is: http://wwwrcamnl.wr.usgs.gov/isoig/isopubs/itch8refs.html
This page maintained by Carol Kendall, ckendall@usgs.gov
This page was last changed on November 24, 1998.
Return to the Periodic Table
Return to the IsoPubs Table of Contents