[U. S. Geological Survey]

Chapter 9

Dissolved Gases in Subsurface Hydrology

D. Kip Solomon, Peter G. Cook and William E. Sanford



Isotope Tracers in Catchment Hydrology (1998), C. Kendall and J.J. McDonnell (Eds.).
Elsevier Science B.V., Amsterdam. pp. 291-318.



References

AFEAS, 1993. Production, Sales and Atmospheric Release of Fluorocarbons through 1992. Alternative Fluorocarbons Environmental Acceptability Study, AFEAS, 34 p.

Alley, W., 1993. Regional Ground-Water Quality. Van Nostrand Reinhold, New York, 634 p.

Andrews, J.N. and Lee, D.J., 1979. Inert gases in groundwater from the Bunter Sandstone of England as indicators of age and paleoclimatic trends. Jour. of Hydrol., 41: 233-252.

Andrews, J.N., Giles, I.S., Kay, R.L.F. and Lee, D.J., 1982. Radioelements, radiogenic helium, and age relationships for groundwaters from the granites at Stripa, Sweden. Geochim. et Cosmochim. Acta, 46: 1533-1543.

Andrews, J.N., Goldbrunner, J.E., Darling, W.G., Hooker, P.J., Wilson, G.B., Youngman, M.J., Eichinger, L., Rauert, W. and Stichler, W., 1985. A radiochemical, hydrochemical and dissolved gas study of groundwaters in the Molasses basin of Upper Austria, Earth Planet. Sci. Lett., 73: 317-332.

Andrews, J.N., 1992. Mechanisms for noble gas dissolution by groundwaters. In: Isotopes of Noble Gases as Tracers in Environmental Studies, Proceedings of a consultants meeting on isotopes of noble gases as tracers in environmental studies, May 29 to June 2, 1989, IAEA, Vienna, 305 p.

Balderer, W. and Lehmann, B.E., 1989. 3He/4He-ratios as indicators of the origin of helium in groundwater; examples from the deep Nagra boreholes in northern Switzerland. In: D.L. Miles (editor), 6th International Symposium on Water Rock Interaction in Malvern, British Geological Survey, pp. 45-47.

Ballentine, C.J., O'Nions, R.K., Oxburgh, E.R., Horvath, F. and Deak, J., 1991. Rare gas constraints on hydrocarbon accumulation, crustal degassing and groundwater flow in the Pannonian Basin, Earth Planet. Sci. Lett., 105(1-3): 229-246.

Benson, B.B. and Krause, Jr., D., 1976. Empirical laws for dilute aqueous solutions of nonpolar gases. J. Chem. Physics, 64(2): 689-709.

Bohlke, J.K. and Denver, J.M., 1995. Combined use of groundwater dating, chemical, and isotopic analyses to resolve the history and fate of nitrate contamination in two agricultural watersheds, Atlantic coastal plain, Maryland. Water Resour. Res., 31: 2319-2339.

Bottomley, D.J., Gascoyne, M. and Damineni, D.C., 1990. The geochemistry, age, and origin of groundwater in a mafic pluton, East Bull Lake, Ontario, Canada. Geochim. et Cosmochim. Acta, 54(4): 993-1008.

Brown, J.D., 1980. Evaluation of fluorocarbon compounds as ground water tracers: soil column studies. M.Sc. University of Arizona, 97 p.

Bu, X. and Warner, M.J., 1995. Solubility of chlorofluorocarbon 113 in water and seawater. Deep Sea Res., 42: 1151-1161.

Bullister, J.L. and Weiss, R.F., 1988. Determination of CCl3F and CCl2F2 in seawater and air. Deep Sea Res., 35: 839-853.

Busenberg, E. and Plummer, L.N., 1992. Use of chlorofluorocarbons (CCl3F and CCl2F2) as hydrologic tracers and age-dating tools: the alluvium and terrace system of Central Oklahoma. Water Resour. Res., 28: 2257-2283.

Busenberg, E. and Plummer, L.N., 1993. Use of trichlorofluorocarbon-113 (CFC-113) as a hydrologic tracer and age-dating tool of young ground water. In: GSA Annual Meeting, Boston, p. 365.

Carter, R.S., Kaufman, W.J., Orlob, G.T. and Todd, D.K., 1959. Helium as a groundwater tracer. Jour. Geophys. Res., 64: 2433-2439.

Ciccioli, P., Cooper, W.T., Hammer, P.M. and Hayes, J.M., 1980. Organic solute-mineral surface interactions: a new method for the determination of groundwater velocities. Water Resour. Res., 16: 217-223.

Cook, P.G. and Solomon, D.K., 1995. The transport of atmospheric trace gases to the water table: implications for groundwater dating with chlorofluorocarbons and krypton 85. Water Resour. Res., 31: 263-270.

Cook, P.G., Solomon, D.K., Plummer, L.N., Busenberg, E. and Schiff, S.L., 1995. Chlorofluorocarbons as tracers of groundwater transport processes in a shallow, silty sand aquifer. Water Resour. Res., 31: 425-434.

Cook, P.G., Solomon, D.K., Sanford, W.E., Busenberg, E., Plummer, L.N. and Poreda, R.J., 1996. Inferring shallow groundwater flow in saprolite and fractured rock using environmental tracers. Water Resour. Res., 32: 1501-1509.

Cook, P.G. and Solomon, D.K., 1996. Recent advances in dating young groundwater: chlorofluorocarbons, 3H/3He, and 85Kr. Jour. of Hydrol., 191: 245-265.

Cooper, W.T., 1981. Interactions between organic solutes and mineral surfaces and their significance in hydrogeology. Ph.D. dissertation, Indiana University, 234 pp.

Cunnold, D.M., Fraser, P.J., Weiss, R.F., Prinn, R.G., Simmonds, P.G., Miller, B.R., Alyea, F.N. and Crawford, A.J., 1994. Global trends and annual releases of CCl3F and CCl2F2 estimated from ALE/GAGE and other measurements from July 1978 to June 1991. Jour. Geophys. Res., 99: 1107-1126.

Davis, S.N. and DeWiest, R.J.M., 1966. Hydrogeology. John Wiley and Sons, Chichester, 463 p.

Dunkle, S.A., Plummer, L.N., Busenberg, E., Phillips, P.J., Denver, J.M., Hamilton, P.A., Michel, R.L. and Coplen, T.B., 1993. Chlorofluorocarbons (CCl3F and CCl2F2) as dating tools and hydrologic tracers in shallow groundwater of the Delmarva Peninsula, Atlantic Coastal Plain, United States. Water Resour. Res., 29: 3837-3860.

Eikenberg, J., Frick, U., Fierz, T. and Buhler, C., 1992. On-line detection of stable helium isotopes in migration experiments. In: H. Hotzle and A. Werner (Eds), Tracer Hydrology, Proceedings of the 6th international symposium on water tracing, Karlsruhe, Germany, Sept. 21-26, Balkema, Rotterdam, pp. 77-84.

Ekwurzel, B., Schlosser, P., Smethie, Jr., W.M., Plummer, L.N., Busenberg, E., Michel, R.L., Weppernig, R. and Stute, M., 1994. Dating of shallow groundwater: comparison of the transient tracers 3H/3He, chlorofluorocarbons, and 85Kr. Water Resour. Res., 30: 1693-1708.

Elkins, J.W., Thompson, T.M., Swanson, T.H., Butler, J.H., Halls, B.D., Cummings, S.O., Fisher, D.A. and Raffo, A.G., 1993. Decrease in growth rates of atmospheric chlorofluorocarbons 11 and 12. Nature, 364: 780-783.

Fry, V.A., Istok, J.D., Semprini, L., O'Reilly, K.T. and Bushcheck, T.E., 1995. Retardation of dissolved oxygen due to a trapped gas phase in porous media. Ground Water, 33(3): 391-398.

Fu, W.H., Ledoux, E. and deMarsily, G., 1990. Regional modeling of groundwater flow and salt and environmental tracer transport in deep aquifers in the Paris Basin. Jour. of Hydrol., 120 (1-4): 341-358.

Gascoyne, M., Wuschke, D.M., and Durrance, E.M., 1992. Fracture detection and groundwater flow characterization using He and Rn in soil gases. Appl. Geochem., 8: 223-233.

Gascoyne, M. and Sheppard, M.I., 1993. Evidence of terrestrial discharge of deep groundwater on the Canadian Shield from helium in soil gas. Environ. Sci. and Tech., 27(12): 2420-2486.

Goode, D.J., 1996. Direct simulation of groundwater age. Water Resour. Res., 32: 289-296.

Gupta, S.K., Lau, L.S., and Moravcik, P.S., 1994. Ground-water tracing with injected helium. Ground Water, 32(1): 96-102.

Heaton, T.H.E. and Vogel, J.C., 1981. Excess air in groundwater. Jour. of Hydrol., 50: 201-216.

Hillel, D., 1980. Fundamentals of Soil Physics. Academic Press Inc., Orlando, Florida, 413 p.

Hirth, D.K., 1995. Ground water tracing in karst terrain near Fort White, Florida using sulfur hexafluoride gas. In: GSA Southeastern Section Meeting, Knoxville, TN, p. 63.

IAEA, 1992. Isotopes of Noble Gases as Tracers in Environmental Studies, Proceedings of a consultants meeting on isotopes of noble gases as tracers in environmental studies, May 29 to June 2, 1989, IAEA, Vienna, 305 p.

Jackson, R.E., Lesage, S. and Priddle, M.W., 1992. Estimating the fate and mobility of CFC-113 in groundwater: results from the Gloucester Landfill Project. In: R.E. Jackson and S. Lesage (Editors), Groundwater Contamination and Analysis at Hazardous Waste Sites, Marcel Dekker, New York, pp. 511-526.

Jacob, D.J., Prather, M.J., Wofsy, S.C. and McElroy, M.B., 1987. Atmospheric distribution of 85Kr simulated with a general circulation model. Jour. Geophys. Res., 92: 6614-6626.

Jahne, B, Heinz, G. and Deitrich, W., 1987. Measurement of the diffusion coefficients of sparingly soluble gases in water. Jour. of Geophys. Res., 92: 10767-10776.

Jardine, P.M., Reedy, O.C., O'Brien, R., Sanford, W.E., Hicks, D.S. and Gwo, J.P., 1995. Quantifying contaminant mass transfer processes at laboratory and field scales. In: Program and Abstract, The Geochemical Society V. M. Goldschmidt Conference, May 24-26, p. 58.

Johnston, C.T., 1994. Geochemistry, isotopic composition, and age of groundwater from the Waterloo Moraine: implications for groundwater protection and management, M.Sc., University of Waterloo, 183 p.

Jones, B., Schirmer, M., Dowd, J.F., Wenner, D.B. and Rasmussen, T., 1995. Use of krypton as a tracer for determining groundwater velocities in fractured crystalline bedrock of North Georgia. In: Geological Society of America Abstracts with Programs Annual Meeting, New Orleans, A-41.

Katz, B.G., Lee, T.M., Plummer, L.N. and Busenberg, E., 1995. Chemical evolution of groundwater near a sinkhole lake, northern Florida. 1. Flow patterns, age of groundwater, and influence of lake water leakage. Water Resour. Res., 31: 1549-1564.

Khalil, M.A.K. and Rasmussen, R.A., 1989. The potential of soils as a sink of chlorofluorocarbons and other man-made chlorocarbons. Geophys. Res. Lett., 16: 679-682.

Khalil, M.A.K. and Rasmussen, R.A., 1993. The environmental history and probable future of Fluorocarbon 11. Jour. Geophys. Res., 98: 23091-23106.

Kipfer, R., Aeschbach-Hertig, W., Baur, H., Hofer, M., Imboden, D.M. and Signer, P., 1994. Injection of mantle type helium into Lake Van (Turkey): the clue for quantifying deep water renewal. Earth Plan. Sci. Lett., 125: 357-370.

Knowles, T.L., McCarthy, J.F. and Sanford, W.E., 1995. Multiple nonreactive and reactive tracers to investigate the migration of transuranics in groundwater. In: American Geophysical Union 1995 Fall Meeting, San Francisco, F238.

Ko, M. and Jackman, C., 1994. Model calculations of atmospheric lifetime. In: J. Kaye et al. (Eds), Report on Concentrations, Lifetimes and Trends of CFCs, Halons and Related Species, 1339, NASA Office of Mission to Planet Earth, pp. 5.1-5.33.

Lee, R.R., Ketelle, R.H., Bownds, J.M. and Rizk, T.A., 1992. Aquifer analysis and modeling in a fractured, heterogeneous medium. Ground Water, 30(4): 589-597.

Lovelock, J.E., 1972. Atmospheric turbidity and CCl3F concentrations in rural southern England and southern Ireland. Atmos. Environ., 6: 917-925.

Lovley, D.R. and Woodward, J.C., 1992. Consumption of freons CFC-11 and CFC-12 by anaerobic sediments and soils. Environ. Sci. Tech., 26: 925-929.

Marine, I.W., 1979. The use of naturally occurring helium to estimate groundwater velocities for studies of geologic storage of radioactive waste. Water Resour. Res., 15: 1130-1136.

Marty, B., Torgersen, T., Meynier, V., O'Nions, R.K. and de Marsily, G., 1993. Helium isotope fluxes and groundwater ages in the Dogger Aquifer, Paris Basin. Water Resour. Res., 29 (4): 1025-1035.

Mazor, E., 1972. Paleotempratures and other hydrological parameters deduced from noble gases dissolved in groundwaters, Jordan Rift Valley, Israel. Geochim. et Cosmochim. Acta, 36: 1321-1336.

Mazor, E. and Bosch, A., 1991. Dynamics of groundwater in deep basins 4He dating, hydraulic discontinuities, and rates of drainage, In: H. Ventriss (editor), Proceedings of the International conference on groundwater in large sedimentary basins. Australian Water Resources Council Conference Series, Perth, West Australia, Australia, pp. 380-389.

Mazor, E., 1997. Chemical and Isotopic Groundwater Hydrology: The Applied Approach. New York; Marcel Dekker, 413 pp.

Mazor, E. and Bosch, A., 1992. Helium as a semi-quantitative tool for groundwater dating in the range of 104 to 108 years. In: Consultants meeting on isotopes of noble gases as tracers in environmental studies, IAEA, Vienna, 305 p.

McCarthy, R.L., Bower, F.A. and Jesson, J.P., 1977. The Fluorocarbon-Ozone Theory, I., Production and Release - world production and release of CCl3F and CCl2F2 (Fluorocarbons 11 and 12) through 1975. Atmos. Environ., 11: 491-497.

Moline, G.R., Sanford, W.E., Burlage, R.S., Strong-Gunderson, J.M., Harton, A., Cumbie, D. and McKay, L.D., 1995. Assessing fracture interconnectivity and fracture flow dynamics using multiple groundwater tracers. In: American Geophysical Union 1995 Fall Meeting, San Francisco, F239.

Nelson, N.T. and Brusseau, M.L., 1995. Field demonstration of SF6 as a tracer for investigating contaminant transport in a TCE-contaminated aquifer. In: American Geophysical Union 1995 Fall Meeting, San Francisco, F244.

Ozima and Podosek, 1983. Noble gas geochemistry. Cambridge University Press, 367 p.

Pearson, Jr., F.J., Balderer, W., Loosli, H.H., Leymann, B.E., Matter, A., Peters, T., Schmassmann, H. and Gautschi, A., 1991. Applied Isotope Hydrology A Case Study in Northern Switzerland, Vol. 43. Studies in Environmental Science, Elsevier, Amsterdam, 439 p.

Plummer, L.N., Michel, R.L., Thurman, E.M. and Glynn, P.D., 1993. Environmental tracers for age-dating young groundwater. In: W. Alley (editor), Regional Ground-Water Quality, Van Nostrand Reinhold, New York, pp. 255-294.

Poreda, R.J., Cerling, T.E. and Solomon, D.K., 1988. Tritium and helium isotopes as hydrologic tracers in a shallow unconfined aquifer. Jour. of Hydrol., 103: 1-9.

Poreda, R.J and Farley, K.A., 1992. Rare gases in Samoan Xenoliths. Earth Planet. Sci. Lett., 113: 129-144.

Prinn, R.G., Simmonds, P.G., Rasmussen, R.A., Rosen, R.D., Alyea, F. N., Cardelino, C.A., Crawford, A.J., Cunnold, D.M., Fraser, P.J. and Lovelock, J.E., 1983. The Atmospheric Lifetime Experiment: 1. Introduction, instrumentation and overview. Jour. Geophys. Res., 88(C13): 8353-8367.

Rasmussen, R.A. and Khalil, M.A.K., 1986. Atmospheric trace gases: trends and distributions over the last decade. Science, 232: 1623-1624.

Reilly, T.E., Plummer, L.N., Phillips, P.J. and Busenberg, E., 1994. The use of simulation and multiple environmental tracers to quantify groundwater flow in a shallow aquifer. Water Resour. Res., 30: 421-433.

Reynolds, G.W., Hoff, J.T. and Gillham, R.W., 1990. Sampling bias caused by materials used to monitor halocarbons in groundwater. Environ. Sci. Tech., 24: 135-142.

Robertson, W.D. and Cherry, J.A., 1989. Tritium as an indicator of recharge and dispersion in a groundwater system in central Ontario. Water Resour. Res., 25(6): 1097-1109.

Rowland, F.S., 1990. Stratospheric ozone depletion by chlorofluorocarbons. Ambio, 19: 281-291.

Rozanski, K. and Florkowski, T., 1979. Krypton-85 dating of groundwater. In: Isotope Hydrology 1978, IAEA, Vienna, pp. 949-961.

Russell, A.D. and Thompson, G.M., 1983. Mechanisms leading to enrichment of the atmospheric fluorocarbons CCl3F and CCl2F2 in groundwater. Water Resour. Res., 19: 57-60.

Sanford, W.E. and Moore, G.K., 1994. Measurement of specific discharge with point-dilution tests in the fractured rocks of eastern Tennessee. In: Proceedings of Extended Abstracts, American Water Resources Association 1994 Annual Spring Symposium in Nashville, Tennessee, pp. 449-453.

Sanford, W.E., Jardine, P.M. and Solomon, D.K., 1994. Examining matrix diffusion in fractured shales with noble gases. In: Geological Society of America Annual Meeting, Seattle, A-362.

Sanford, W.E. and Solomon, D.K., 1995. Noble gas tracer experiment in a fractured, weathered shale near Oak Ridge, Tennessee. In: Proceedings of the International Association of Hydrogeologists, Solutions '95 Congress in Edmonton, Alberta, Canada, p. 5.

Sanford, W.E., Shropshire, R.G. and Solomon, D.K., 1996. Dissolved gas tracers in groundwater: Simplified injection, sampling, and analysis. Water Resour. Res., 32(6): 1635-1642.

Schlosser, P., Stute, M., Dorr, H., Sonntag, C. and Oto, K.M., 1988. Tritium/3He dating of shallow groundwater. Earth Planet. Sci. Lett., 89: 353-362.

Schlosser, P., Stute, M., Sonntag, C. and Munnich, K.O., 1989. Tritiogenic 3He in shallow groundwater. Earth Planet. Sci. Lett., 94: 245-254.

Semprini, L., Hopkins, G.D., McCarthy, P.L. and Roberts, P.V., 1992. In-situ transformation of carbon tetrachloride and other halogenated compounds resulting from biostimulation under anoxic conditions. Environ. Sci. Tech., 26(12): 2454-2461.

Severinghaus, J.P., Broecker, W.S., Keeling, R.F., Deck, B., Miller, B.R., Weiss, R.F. and Bender, M.L., 1994. The importance of advection versus diffusion in vadose zone gas transport: evidence from gases in sand dunes. In: AGU 1994 Fall Meeting, San Francisco, p. 253.

Smethie, W.M. and Mathieu, G., 1986. Measurement of krypton-85 in the ocean. Marine Chem., 18: 17-33.

Smethie, W.M., Solomon, D.K., Schiff, S.L. and Mathieu, G.G., 1992. Tracing groundwater flow in the Borden aquifer using krypton-85. Jour. of Hydrol., 130: 279-297.

Solomon, D.K., Moore, G.K., Toran, L.E., Dreier, R.B. and McMaster, W.M., 1992a. A hydrologic framework for the Oak Ridge Reservation, Oak Ridge National Laboratory, ORNL/TM-12026.

Solomon, D.K., Poreda, R.J., Schiff, S.L. and Cherry, J.A., 1992b. Tritium and helium-3 as groundwater age tracers in the Borden aquifer. Water Resour. Res., 28: 741-755.

Solomon, D.K., Schiff, S.L., Poreda, R.J. and Clarke, W.B., 1993. A validation of the 3H/3He method for determining groundwater recharge. Water Resour. Res., 29(9): 2851-2962.

Solomon, D.K. and Cook, P.G., 1994. Groundwater age as an indicator of recharge to unconfined aquifers. In: American Geophysical Union 1994 Spring Meeting, Baltimore, p. 155.

Solomon, D.K., Poreda, R.J., Cook, P.G. and Hunt, A., 1995. Site characterization using 3H/3He ground water ages, Cape Cod, MA. Ground Water, 33: 988-996.

Solomon, D.K., Hunt, A. and Poreda, R.J., 1996. Source of radiogenic helium 4 in shallow aquifers: Implications for dating young groundwater. Water Resour. Res., 32: 1805-1813.

Stephenson, M., Schwartz, W.J., Melnyk, T.W. and Motycka, M.F., 1994. Measurement of advective water velocity in lake sediment using natural helium gradients. Jour. of Hydrol., 154: 63-84.

Stute, M. and Sonntag, C., 1992. Paleotempertures derived from noble gases dissolved in groundwater and in relation to soil temperature. In: Isotopes of Noble Gases as Tracers in Environmental Studies, Proceedings of a consultants meeting on isotopes of noble gases as tracers in environmental studies, May 29 to June 2, 1989, IAEA, Vienna, 305 p.

Stute, M., Schlosser, P., Clark, J.F. and Broecker, W.S., 1992a. Paleotemperatures in the Southwestern United States derived from noble gases in ground water. Science, 256: 1000-1003.

Stute, M., Sonntag, C., Deak, J. and Schlosser, P., 1992b. Helium in deep circulating groundwater in the Great Hungarian Plain: flow dynamics and crustal and mantle helium fluxes. Geochim. et Cosmochim. Acta, 56: 2051-2067.

Sugisaki, R., 1961. Measurements of effective flow velocity of groundwater by means of dissolved gas. Am. J. Sci., 259: 144-153.

Sugisaki, R., Takeda, H., Kawabe, I. and Miyazaki, I., 1982. Simplified gas chromatographic analyses of H2, He, Ne, Ar, N2, and CH4 in subsurface gases for seismo-geochemical studies. Chem. Geol., 36: 217-226.

Sugisaki, R. and Aoki, T., 1993. Application of inert gases as tracers in a multiple well system. J. Earth and Planetary Sciences, Nagoya University, 40: 17-26.

Takaoka, N. and Mizutani, Y., 1987. Tritiogenic 3He in groundwater in Takaoka. Earth Planet. Sci. Lett., 85: 74.

Thompson, G.M and Hayes, J.M., 1979. Trichlorofluoromethane in groundwater - a possible tracer and indicator of groundwater age. Water Resour. Res., 15: 546-554.

Thonnard, N., Wright, M.C., Davis, W.A. and Willis, R.D., 1992. The second-generation RIS-TOF noble gas detector: detection limits below 100 atoms in less than 5 minutes. In: J.E. Parks and C.M. Miller (Eds), Resonance Ionization Spectroscopy 1992, p. 128.

Tolstikhin, I.N. and Kamensky, I.L., 1969. Determination of groundwater age by the T-3He method. Geochem. Int., 6: 810-811.

Torgersen, T., Zop, T., Clarke, W.B., Jenkins, W.J. and Broecker, W.S., 1977. A new method for physical limnology - tritium-helium-3 ages - results for Lakes Erie, Huron and Ontario. Limnol. Oceanog., 22: 181-193.

Torgersen, T., Clarke, W.B. and Jenkins, W.J., 1979. The tritium/helium-3 method in hydrology. IAEA-SM-228/49.

Torgersen, T., 1980. Controls on porefluid concentration of 4He and 222Rn and the calculation of 4He/Rn ages. J. Geochem. Explor., 13: 57-75.

Torgersen, T. and Ivey, G.N., 1985. Helium accumulation in groundwater, 2, A model for the accumulation of the crustal 4He degassing flux. Geochim. et Cosmochim. Acta, 49: 2445-2452.

Trumbore, S.E., Jacobs, S.S. and Smethie, W.M., 1991. Chlorofluorocarbon evidence for rapid ventilation of the Ross Sea, Deep Sea Res., 38: 845-870.

Upstill-Goddard, R.C., Watson, A.J., Wood, J. and Liddicoat, M.I., 1991. Sulphur hexafluoride and helium-3 as sea-water tracers: deployment techniques and continuous underway analysis for sulphur hexafluoride. Anal. Chim. Acta, 249: 555-562.

Wallace, D.W.R., Schlosser, P., Krysell, M. and Bonisch, G., 1992. Halocarbon ratio and tritium/3He dating of water masses in the Nansen Basin, Arctic Ocean. Deep Sea Res., 39: S435-S458.

Wang, J.H., Robinson, C.v. and Edelman, E.S., 1952. Self-diffusion and structure of liquid water. III. Measurement of the self-diffusion of liquid water with H2, H3 and O18 as tracers, J. Am. Chem. Soc., 75: 466-470.

Warner, M.J. and Weiss, R.F., 1985. Solubilities of chlorofluorocarbons 11 and 12 in water and seawater, Deep Sea Res., 32: 1485-1497.

Weeks, E.P., Earp, D.E. and Thompson, G.M., 1982. Use of atmospheric fluorocarbons F-11 and F-12 to determine the diffusion parameters of the unsaturated zone in the Southern High Plains of Texas. Water Resour. Res., 18: 1365-1378.

Weise, S. and Moser, H., 1987. Groundwater dating with helium isotopes. In: Isotope Techniques in Water Resource Development, Vienna, IAEA, pp. 105-126.

Weiss, W., Sartorius, H. and Stockburge, H., 1992. Global distribution of atmospheric 85Kr. In: Isotopes of Noble Gases as Tracers in Environmental Studies, IAEA, Vienna, pp. 29-62.

Wilson, R.D. and Mackay, D.M., 1993. The use of sulfur hexafluoride as a conservative tracer in saturated sandy media. Ground Water, 31(5): 719-724.

Wilson, R.D. and Mackay, D.M., 1995. Direct determination of residual nonaqueous phase liquids in the saturated zone using SF6 as a partitioning tracer. Environ. Sci. & Tech., 29: 1255-1258.

Wuest, A., Aeschbach-Hertig, W., Baur, H., Hofer, M., Kipfer, R. and Schurter, M., 1992. Density structure and tritium-helium age of deep hypolimnetic water in the northern basin of Lake Lugano. Aquatic Sciences, 54: 205-218.

Zimmerman, P.H., Feichter, J., Rath, H.K., Crutzer, P.J. and Weiss, W., 1989. A global three-dimensional source-receptor model investigation using 85Kr. Atmos. Environ., 23: 25-35.


The URL of this page is: http://wwwrcamnl.wr.usgs.gov/isoig/isopubs/itch9refs.html
This page maintained by Carol Kendall, ckendall@usgs.gov
This page was last changed on November 24, 1998.
Return to the Periodic Table
Return to the IsoPubs Table of Contents