
Metal exposure in a benthic macroinvertebrate,
Hydropsyche californica, related to mine drainage
in the Sacramento River

Daniel J. Cain, James L. Carter, Steven V. Fend, Samuel N. Luoma,
Charles N. Alpers, and Howard E. Taylor

Abstract: A biomonitoring technique was employed to complement studies of metal transport in the upper Sacramento
River affected by acid mine drainage. Metals (Al, Cd, Cu, Fe, Hg, Pb, and Zn) were determined in a resident inverte-
brate,Hydropsyche californica(Insecta: Trichoptera), and streambed sediments (<62mm) to assess metal contamination
within a 111-km section of the river downstream of the mining area. Metals inH. californica also were interpreted to
be broadly indicative of metal exposure in fish. Total Hg was determined in the whole body of the insect, whereas Al,
Cd, Cu, Fe, Pb, and Zn were additionally separated into operationally defined cytosolic (used as an indicator of expo-
sure to bioavailable metal) and particulate fractions. Total concentrations of Cd, Cu, Hg, Pb, and Zn in sediments were
consistent with documented upstream sources of acid mine drainage. Metal distribution patterns inH. californica and
sediments were generally consistent for Cd, Cu, and Pb but inconsistent for Hg and Zn. Concentrations in
H. californica indicated that bioavailable Cd, Cu, Pb, and Zn was transported at least 120 km downstream of the mine
sources. Zinc inH. californica was elevated, but unlike sediments, did not decrease downstream. Mercury in
H. californica was not elevated.

Résumé: Une technique de biosurveillance a été utilisée pour compléter des études sur le transport de métaux dans le
cours supérieur de la rivière Sacramento contaminée par l’eau d’exhaure acide. Les métaux (Al, Cd, Cu, Fe, Hg, Pb et
Zn) ont été mesurés chez un invertébré résident,Hydropsyche californica(Insecta : Trichoptera), et dans les sédiments
du lit (<62mm) afin d’évaluer la contamination par les métaux dans un tronçon de 111 km de la rivière en aval de la
région minière. La présence de métaux chezH. californica a aussi été interprétée comme une indication générale d’une
exposition des poissons à ces métaux. La concentration totale de Hg a été mesurée dans tout le corps des insectes, tan-
dis que Al, Cd, Cu, Fe, Pb et Zn ont en outre été séparés en fractions cytolosique (utilisée comme indicateur de
l’exposition au métal biodisponible) et particulaire définies opérationnellement. Les concentrations totales de Cd, Cu,
Hg, Pb et Zn dans les sédiments concordaient avec l’information connue sur les sources d’eau d’exhaure acide en
amont. Les profils de répartition des métaux chezH. californica et dans les sédiments étaient en général cohérents
dans les cas du Cd, du Cu et du Pb, mais irréguliers dans le cas de Hg et de Zn. Les concentrations chezH. califor-
nica ont montré que le Cd, le Cu, le Pb et le Zn biodisponibles étaient transportés à au moins 120 km en aval des
sources minières. La concentration de Zn chezH. californica était élevée, mais à la différence de ce qu’on observait
dans les sédiments, elle ne diminuait pas en aval. La concentration de Hg chezH. californica n’était pas élevée.

[Traduit par la Rédaction] Cain et al. 390

Introduction

Metal contamination of freshwaters by mining is wide-
spread (Moore and Luoma 1990). While total metal concen-
trations in environmental media (e.g., water and sediment)
indicate the relative degree and extent of contamination, they

do not necessarily reflect exposures in resident fauna. Ben-
thic insects are one group of organisms used to monitor
metal exposures and assess biological effects in freshwaters
(Cain et al. 1992; Hare 1992; Rosenberg and Resh 1993).
Assessments of biological risk associated with exposure are
strengthened when methods allow distinction between metal
that is taken up and accumulated within cells and metal that
occurs extracellularly. The latter includes a variety of forms
that probably pose little toxic risk (e.g., metals or metal-
bearing particles on external body parts and metals retained
with undigested material in the gut of the animal). Recently,
Cain and Luoma (1998) evaluated metal exposures in a mining-
impacted river by determining metal concentrations of the
cytosol (the soluble portion of the cell cytoplasm) in an
aquatic insect.

Metals analysis of the cytosol and (or) other intracellular
components provides an unambiguous indicator of metal bio-
availability. The cytosol appears to be an important accumu-
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lation site for essential metals such as Cu and Zn and certain
nonessential elements, including Cd (Seidman et al. 1986;
Cain and Luoma 1998; Suzuki et al. 1988). Furthermore,
sublethal effects have been shown to coincide with a redis-
tribution of Cd among cytosolic ligands that occurs with in-
creasing Cd accumulation (Jenkins and Mason 1988).
Therefore, concentrations of cytosolic metals reflect intra-
cellular dose and may be a better diagnostic of toxicity than
either whole-body or whole-tissue concentrations (Thorpe
and Costlow 1989; Roesijadi 1994).

Cytosolic metal also appears to be a biologically available
component of food. Reinfelder and Fisher (1991) demon-
strated that the efficiency of metal absorption by copepods
fed metal-contaminated algae was directly proportional to
metal in the cytosolic fraction of the algae. Although such
simple relationships are not always observed (Lee and
Luoma 1998), studies with predators and their prey suggest
that the cytosolic metal fraction is one component of dietary
exposure (Reinfelder and Fisher 1994; Wallace and Lopez
1997). In contrast, metals that are encased in intracellular in-
clusions, such as Ca or phosphate-rich granules, are not effi-
ciently digested by predators and are passed intact through
the digestive tract (Nott and Nicolaidou 1990). Similarly,
other particulate forms of metal that reside outside the cell,
such as those sorbed to external body parts and bound to un-
digested gut content, may be largely unavailable to higher
trophic organisms.

The upper Sacramento River is affected by acid mine
drainage. Metal contamination of the aquatic food web has
been documented (Wilson et al. 1981; Saiki et al. 1995), but
the downstream extent of metal contamination has not been
fully resolved, and little is specifically known about the bio-
logical availability of metals within the river. The upper Sac-
ramento River is of special concern because it includes
spawning ground for several salmonid fish species, including
four distinct runs of chinook salmon (Oncoryhnchus
tshawytscha), steelhead trout (Oncorhynchus mykiss), and
resident rainbow trout (O. mykiss) (U.S. Environmental Pro-
tection Agency 1992). The winter-run chinook salmon is a
federally listed endangered species, and the steelhead trout
and one or more of the other chinook salmon runs have re-
cently been listed as threatened species (National Oceanic
and Atmospheric Administration 1994, 1997).

This study was one component of a multidisciplinary
study of the distribution, transport, and fate of metals in the
Sacramento River. Detailed studies specific to metal geo-
chemistry and transport are reported elsewhere (Alpers et al.
1999). Here, the principal objective was to assess the occur-
rence and distribution of biologically available metals in the
upper Sacramento River, relative to sediment metal contami-
nation, downstream of documented sources of acid mine
drainage. Also, because of the concern for resident fish,
there was a need for data that were at least broadly indica-
tive of dietary metal exposure in fish.

To satisfy our objectives, metal concentrations were deter-
mined in larvae of the hydropsychid caddisflyHydropsyche
californica. The genusHydropsycheis widely distributed
and abundant in many rivers, including the Sacramento
River. The larva lives for about 1 year as a sedentary, omniv-
orous filter-feeder. Therefore, metal concentrations in the
larva are site specific, and the period of exposure is on the

order of 1 year or less. Larvae ofHydropsycheare relatively
metal tolerant (Spehar et al. 1978; Clements et al. 1992),
thereby making them a good organism for monitoring metal
contamination (Cain et al. 1992). Consumption of metal-
contaminated benthic macroinvertebrates, such asHydro-
psyche, can be a significant cause of chronic metal contami-
nation in resident trout (Farag et al. 1995; Woodward et al.
1995), although studies to identify the form(s) of metal ab-
sorbed during digestion have not been conducted. We sug-
gest that an analysis of the metal partitioning in prey species
of fish may help identify metals most likely to be accumu-
lated from food.

Methods

Site description
Drainage from base-metal mines at Iron Mountain has been a

principal source of metals to the Sacramento River in northern Cal-
ifornia that has threatened resident fauna for many years
(Finlayson and Verrue 1980; Wilson et al. 1981; National Oceanic
and Atmospheric Administration 1989). Recurring fish kills insti-
gated the construction of the Spring Creek Debris Dam (SCDD) in
1963 to reduce the discharge of metal-laden acid mine water from
Spring Creek into the Sacramento River (Fig. 1). In addition, water
is treated with lime to precipitate metals. A temporary lime-
neutralization plant operated 3–4 months per year during 1989–
1993. Since July 1994, there has been continuous, year-round treat-
ment. Treatment has reduced annual metal loadings of Cu by about
80–85% and Zn (and probably Cd also) by about 90%. Prior to
lime-neutralization treatment, about 90% of the Cu loading to the
Sacramento River at Keswick Dam could be attributed to Spring
Creek and the Iron Mountain mine drainage (D. Heiman, State of
California Regional Water Quality Control Board, Sacramento, Ca-
lif., unpublished data). Since 1994, this component of the overall
Cu loading has been reduced to about 50%. The remainder is pre-
dominantly from other mines in the West Shasta mining district
that drain into Shasta Lake via Little Backbone Creek and West
Squaw Creek (D. Heiman, unpublished data).

Flows from the SCDD are regulated by the Bureau of Reclama-
tion, together with dilution flows from Shasta Lake and Whiskey-
town Lake (via the Spring Creek Power Plant), to meet water
quality criteria for the protection of resident fish at a compliance
point below Keswick Dam (Fig. 1). Nevertheless, these water qual-
ity criteria are periodically exceeded during periods of heavy rain-
fall when water in the Spring Creek Reservoir overtops the SCDD
and insufficient dilution flows are available.

Sample collection
Hydropsychelarvae were collected at five stations in the Sacra-

mento River within a 111-km section between Rodeo Park near
Redding (river km 479) and Tehama (river km 368) (Fig. 1). Sta-
tion locations were determined by the availability of suitable habi-
tat and proximity to stations where water quality data were
collected for related studies of metal transport. High seasonal flows
and managed releases of water from Shasta Dam prohibited sam-
pling during much of the year. Samples for this study were col-
lected during October 21–23, 1996, coincident with seasonal lows
in discharge, sediment transport, and metal loading. In addition, a
sample was collected from Cottonwood Creek, near Cottonwood
(river km 439) (Fig. 1), and used as a local reference to evaluate
metal levels in samples from the Sacramento River.

At each station,Hydropsychelarvae were collected from a sin-
gle, shallow (< 0.5 m deep) riffle using large kick nets constructed
of cotton mesh (approximately 1-mm mesh size) and plastic (PVC)
handles. Specimens were picked from the net with nylon forceps
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and placed into plastic trays with stream water (forceps and trays
were previously acid washed). Water in the trays was freshened
periodically. Specimens were transferred from the trays to plastic,
sealed bags and frozen on dry ice in a small volume of river water
within 1 h of collection. The field collections were moved to the
laboratory where they were stored at –70°C until sample prepara-
tion. Specimens for taxonomic identification were preserved in
10% formalin in the field and transferred to 75% ethanol in the
laboratory. Collections contained a single species,H. californica.

Sample preparation
Samples for the determination of Al, Cd, Cu, Fe, Pb, and Zn

were prepared following the method described by Cain and Luoma
(1998). Specimens collected from a station were partially thawed
in batches, rinsed with cold deionized water to remove sediment
and detritus, and then transferred to a glass sorting dish that was
placed on a bed of ice. The animals were immersed in a small
amount of water and viewed individually under a stereomicroscope
for identification and further cleaning.Hydropsyche californica
were collected for metals analysis. Instars were not sorted, al-
though smaller specimens that could not be identified were dis-
carded. Specimens were then transferred to a cooler. When the
entire sample had been sorted and cleaned (1–2 h), the animals
were blotted dry with tissue paper, pooled into replicate, composite

Fig. 1. Names, numerical designations, and locations of stations in the upper Sacramento River and Cottonwood Creek where
H. californica and sediments were collected in October 1996.
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samples (n = 4–6) of approximately the same wet weight, and then
temporarily refrigerated.

Cold 0.05 M Tris–HCl buffer (pH 7.4, previously degassed and
bubbled with N2) was added to each sample at a ratio of 8:1 (milli-
litres of Tris per gram wet weight of subsample). Samples were
homogenized with a stainless steel high-speed tissue homogenizer
under a nitrogen atmosphere for 1 min. The homogenate was sub-
sampled for two fractions: one for the whole-body metal analysis
and the other for the cytosolic metals. The cytosol was isolated by
centrifuging the homogenate at 100 000 ×g for 1 h at 5°C. The
supernatant (cytosol) and pellet were collected and transferred to
separate screw-cap glass vials. Samples were kept cold throughout
the procedure. Sample fractions were frozen at –20°C as they were
prepared. Later, they were freeze-dried, weighed, and digested by
reflux in hot, isopiestically distilled 16 N HNO3. When the diges-
tion was complete, the samples were evaporated to dryness.

Prior to analysis, sample residues were reconstituted by the ad-
dition of 10 mL of 1% high-purity HNO3. Five millilitres of this
solution was diluted to 50 mL for trace metal analysis.

All plastic and glassware used for sample preparation was
cleaned by soaking overnight in a Micro®2 solution, rinsed with
deionized water, and then washed in either 10% HCl or 10% HNO3
and rinsed with deionized water. The tissue homogenizer was
cleaned by soaking overnight in a solution of RBS® and rinsed in
deionized water.

Total Hg concentrations were determined in the whole body only
to assess the occurrence of Hg contamination. Additional samples
from all stations were sorted and cleaned as described above. Station
samples were composed of single or duplicate composites, which
were immediately frozen at –20°C. The composites were freeze-
dried and then homogenized with a mixer mill using 125-mL poly-
carbonate jars and methacrylate balls. Samples were digested fol-
lowing the procedure described by Elrick and Horowitz (1986).

Streambed sediments
Streambed sediment was collected from three to six depositional

areas within 100 m at each station following procedures developed
for the U.S. Geological Survey’s National Water Quality Assess-
ment Program (Shelton and Capel 1994). The sediment was
scooped from the surface (<1 cm depth) with an acid-washed plas-
tic spatula and composited into an acid-washed 8-L container. The
sediment and associated river water were homogenized and then
sieved through a 62-mm nylon mesh. The sediment passing through
the mesh was collected in acid-washed, plastic screw-cap jars and
then chilled on ice for transport to the laboratory. Sediments were
transferred to a freezer (–5°C) until further processing. The sedi-
ment was freeze-dried for 24 h, weighed, and then digested in a
microwave with a mixture of HCl, HNO3, and HF. Prior to analy-
sis, H3BO3 was added to the solutions to complex excess fluoride.

Metals analysis
Metals were determined using several different techniques. Alu-

minum, Cd, Cu, Pb, and Zn were determined on the digested sam-
ples by inductively coupled plasma – mass spectrometry using a
modification of a direct analysis procedure (Taylor and Garbarino
1991). Iron was determined by a modified inductively coupled
plasma – atomic emission spectrometric technique (Taylor and
Garbarino 1985) at a wavelength of 259.94 nm. Mercury in the
caddisflies was determined by cold-vapor atomic absorption spectro-
photometry using conditions described by Elrick and Horowitz
(1986). Mercury in streambed sediments was determined by auto-
mated cold-vapor atomic fluorescence as described by Roth (1994).

Quality assurance
Laboratory determinations of Al, Cd, Cu, Fe, Pb, and Zn were

performed in triplicate on each composite sample. Single or
duplicate determinations of Hg were performed. Standard devia-
tions reported for concentrations of each station represent the com-
bined precisions associated with sample collection, processing, and
analysis of the composite samples.

Accuracy was established by the analysis of standard reference
materials obtained from the National Institute of Standards and
Technology (NIST) and the National Research Council of Canada
(NRC). Four materials were selected to simulate invertebrate
tissue: NIST SRM 1566a (oyster tissue), NIST SRM50 (albacore
tuna), NRC Tort-2 (lobster hepatopancreas), and NRC Dorm-2 (dog-
fish muscle). NIST 2704 (Buffalo River sediment) was used for
streambed sediments. Standards were processed in a manner identi-
cal to the procedure used for the samples. The medians of the ob-
served concentrations for the analysis of the biological reference
materials ranged from 92 to 105% of the reported concentrations
except for Al (68%) and Pb in SRM 50 (120%). In addition, se-
lected representative caddisfly samples were spiked with a standard
containing Cd, Cu, Pb, and Zn prior to sample processing to estab-
lish their recovery during sample handling and analysis. The me-
dian (and range) of spike recoveries was 98% (95–102) for Cd,
94% (82–100) for Cu, 93% (87–98) for Pb, and 96% (93–108) for
Zn. Median recoveries of total digests of NIST 2704 ranged from
93 to 107% of the certified concentrations.

Procedural and reagent blanks were analyzed to evaluate poten-
tial contamination problems during sample processing and analy-
sis. Appropriate reagent blank concentration values were used to
correct the chemical analyses where necessary.

Data analysis
Metal concentrations in streambed sediments are reported as the

mean and standard deviation (n = 3). The mean, standard deviation,
and standard error of composite caddisfly samples (n = 4–6 for all
samples except those analyzed for Hg wheren = 1 or 2) from each
station are reported. The number of samples generally reflected the
abundance ofH. californica at each station. Tissue enrichment fac-
tors were calculated by dividing the mean metal concentrations of
stations in the Sacramento River by the mean metal concentrations
of the sample from Cottonwood Creek. The percentage of metal re-
covered in the cytosol was calculated by dividing the metal con-
centration of the cytosol by the whole-body metal concentration
and multiplying the result by 100. Differences in metal concentra-
tions among stations were determined by single-classification
ANOVA, after the data were log transformed to correct for hetero-
scedasticity. Specific station comparisons were analyzed by the
Turkey honest significant differences test for unequal sample sizes.
Data that were not corrected by log transformation were analyzed
by the Kruskal–Wallis ANOVA. Pearson product-moment correla-
tions were determined between whole-body, particulate, and cyto-
solic metal concentrations using the mean sample concentrations to
avoid any bias due to unequal sample sizes (even though within-
station variance was much less than among-station variance). Cor-
relation analysis also was done between metal concentrations in
Hydropsycheand streambed sediments. Interelement correlations
were performed separately on tissue and sediment metal concentra-
tions among stations to assess similarities in the spatial distribu-
tions of metals within each type of sample. Results of statistical
tests were considered significant ifa < 0.05.

Results

Metal enrichment in Hydropsyche
Mean concentrations of Cd, Cu, Pb, and Zn in the whole

body, pellet, and cytosol ofHydropsychefrom all stations in

2Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
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the Sacramento River were significantly greater than in
those from Cottonwood Creek, the reference site (Table 1).
Aluminum concentrations in the cytosol also were consis-
tently higher in samples from the Sacramento River; how-
ever, concentrations in the whole body (and pellet) were not
significantly different from those in the Cottonwood Creek
sample. Iron concentrations in all body fractions in Sacra-
mento River samples were variable but were not either uni-
formly higher or lower than concentrations in the
Cottonwood Creek sample. Mercury concentrations in sam-
ples from the Sacramento River were£0.06 mg·g–1 and
lower than the concentration in the sample from Cottonwood
Creek. Among the metals analyzed, Cd showed the greatest
degree of enrichment, regardless of body fraction. Enrich-
ment factors for other metals in the whole body and pellet
followed the order Cu > Pb > Zn > Al. Relative to Cotton-
wood Creek, Al and Pb were more enriched in the cytosol
than in the whole body, and therefore, the order of enrich-
ment was Cd > Pb > Al³ Cu > Zn.

Metal partitioning in the insect
Whole-body concentrations represent the accumulation of

both cytosolic and noncytosolic, particulate metal forms.
(Particulate metal forms are operationally defined as metal
retained in the pellet after ultracentrifugation.) Partitioning
between cytosolic and particulate forms differed greatly
among different groups of elements. The cytosol was an im-
portant accumulation site for Cd, Cu, and Zn, accounting for
approximately 50–100% of the total body burden of these el-
ements (Table 2). Much lower percentages (£20%) of the
body burdens of Al, Fe, and Pb occurred in the cytosol (Ta-
ble 2). Particulate form(s) accounted for more than 99% of

the total Al body burden and at least 85% of the total Fe
body burden. The proportion of particulate Pb ranged be-
tween 80 and 92%.

As expected, the results of correlations between the whole-
body and cytosolic and particulate metal concentrations were
affected by partitioning of metal in the insect. Because the
cytosol was a major accumulation site for Cd, Cu, and Zn,
cytosolic concentrations of these metals correlated strongly
with whole-body concentrations (Fig. 2), and therefore, whole-
body Cd, Cu, and Zn concentrations were indicative of expo-
sures to biologically available metal. Concentrations in the
particulate fraction, which represented up to 53% of the
body burden, also correlated with the whole-body concentra-
tions (results not shown). Aluminum and Fe concentrations
in the whole body did not correlate with cytosolic Al and Fe
concentrations. Whole-body and cytosolic concentrations of
Al were negatively correlated among stations in the Sacra-
mento River (p = 0.04) (Fig. 2). Cytosolic Fe concentrations
were independent of whole-body concentrations. A weak,
positive relationship between whole-body and cytosolic Pb
was influenced by the low concentrations in the Cottonwood
Creek sample (Fig. 2). Among samples from the Sacramento
River, whole-body Pb concentrations were not predictive of
cytosolic Pb concentrations (Fig. 2). For Al, Fe, and Pb, con-
centrations in the whole body and particulate fraction were
highly correlated (p £ 0.02), reflecting the dominant accu-
mulation of these elements in noncytosolic forms.

Spatial patterns in whole-body concentrations of Al, Fe,
Pb, and Hg

As suggested above, spatial patterns in the concentrations
of Al, Fe, and Pb in the whole body (and the particulate
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Station

Element
Body
fraction

1 (Rodeo
Park)

2 (Churn
Creek)

3 (Balls
Ferry)

4 (Bend
Bridge)

5
(Tehama)

6 (Cottonwood
Creek) EF

Al Whole body 1240±50 1350±60 1300±40 1940±40 2110±110 1360±160 0.9–1.6
Cytosol 10±1 8±0.4 11±2 6±1 6±1 3±0.4 2.0–3.7
Pellet 960±150 1420±87 1270±80 1720±130 1710±80 1130±110 0.8–1.5

Cd Whole body 2.16±0.10 0.96±0.05 0.77±0.08 1.14±0.09 0.66±0.02 0.06±0.02 11–36
Cytosol 1.27±0.09 0.55±0.04 0.52±0.14 0.73±0.05 0.36±0.02 0.07±0.01 5.1–18
Pellet 0.94±0.23 0.41±0.02 0.33±0.04 0.52±0.04 0.30±0.02 £0.02 ³15–47

Cu Whole body 37.5±3.2 37.7±1.6 25.0±1.3 30.8±2.5 25.6±1.2 14.5±0.4 1.7–2.6
Cytosol 20.7±1.1 20.8±1.0 14.1±0.3 16.8±1.3 12.1±0.9 6.9±0.4 1.8–3.0
Pellet 15.3±6.0 18.4±1.3 12.1±0.8 16.2±1.3 14.0±0.6 7.8±0.6 1.6–2.4

Fe Whole body 1460±150 2070±50 1340±320 1970±590 2830±190 1860±200 0.7–1.5
Cytosol 45±2 57±9 65±5 78±8 55±7 69±10 0.7–1.1
Pellet 1360±390 1990±70 1470±160 1880±360 2740±240 1880±80 0.7–1.5

Hg Whole body 0.040 0.060 0.05±0.01 0.045±0.001 0.03±0.01 0.08 NE
Pb Whole body 1.26±0.05 1.26±0.04 0.93±0.10 1.07±0.05 1.23±0.08 0.59±0.05 1.6–2.1

Cytosol 0.25±0.02 0.15±0.02 0.18±0.05 0.18±0.07 0.15±0.03 0.05±0.01 3.0–5.0
Pellet 1.06±0.46 1.08±0.07 0.88±0.19 1.02±0.05 1.05±0.05 0.52±0.02 1.7–2.1

Zn Whole body 169±9 160±4 171±4 208±6 160±5 113±6 1.4–1.8
Cytosol 82±3 96±5 95±3 104±4 80±5 59±5 1.4–1.8
Pellet 87±17 101±3 91±8 108±5 94±3 58±5 1.5–1.9

Note: Values are the mean ± 1 SD (n = 1–6). Metal enrichment factors (EF) in the Sacramento River (metal concentration of Sacramento River
station/metal concentration in Cottonwood Creek) are shown. NE, not enriched (i.e., EF < 1).

Table 1. Metal concentrations (mg·g dry weight–1) in H. californica collected from the Sacramento River and Cottonwood Creek during
October 21–23, 1996.
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fraction) were distinctly different from those displayed in
the cytosol. Whole-body concentrations of Al and Fe exhib-
ited similarities in their longitudinal distribution within the
Sacramento River that differed from the distributions of
other elements. Concentrations between Rodeo Park and
Balls Ferry (stations 1–3) were generally lower than concen-
trations at Bend Bridge (station 4) and Tehama (station 5)
(Fig. 3). Between Balls Ferry and Tehama, concentrations of

Al and Fe in the whole body increased significantly. Lead
concentrations were highest at Rodeo Park, Churn Creek,
and Tehama (Fig. 3). Thus, there was no net change in Pb
concentration between the most upstream and downstream
stations, but concentrations decreased significantly between
Churn Creek and Balls Ferry and then progressively in-
creased downstream to Tehama. The concentration pattern
of Pb between Balls Ferry and Tehama closely resembled
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Station

Element 1 (Rodeo Park) 2 (Churn Creek) 3 (Balls Ferry) 4 (Bend Bridge) 5 (Tehama) 6 (Cottonwood Creek)

Al 0.8 0.6 0.8 0.3 0.3 0.2
Cd 59 57 68 64 55 100
Cu 55 55 56 55 47 48
Fe 3 3 5 4 2 4
Pb 20 12 19 17 12 8
Zn 49 60 56 50 50 52

Table 2. Mean percentage of total metal body burden recovered in the cytosol (calculated as cytosolic metal concentra-
tion/whole body metal concentration × 100) ofH. californica collected from the Sacramento River and Cottonwood Creek.

Fig. 2. Correlation between the mean metal concentrations in the whole body and cytosol ofH. californica. Data are identified by sta-
tion. (a) Al; (b) Fe; (c) Pb; (d) Cd; (e) Cu; (f) Zn. The correlation coefficientr and probability levelp are given for each element.
Data are fitted using a linear regression. Dotted lines are the 95% confidence intervals.
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that of Fe. Mercury concentrations in samples collected from
the Sacramento River were slightly less than in the Cotton-
wood Creek sample and did not exhibit any organized spa-
tial pattern (Table 1).

Spatial patterns in enriched, cytosolic metals
Cytosolic metals differed in their distribution in the Sacra-

mento River. Maximum concentrations of cytosolic Cd, Cu,
Pb, and Al occurred in the samples from the three most
upstream stations (Rodeo Park, Churn Creek, and Balls
Ferry). From these stations, cytosolic metal concentrations
decreased downstream to Tehama, although the attenuation
patterns differed in some respects. Cadmium displayed the
greatest attenuation in concentration, decreasing about 70%
from Rodeo Park to Tehama. The majority (80%) of this
decrease occurred between Rodeo Park and Churn Creek
(Fig. 3). Copper concentrations decreased by roughly 40%
between Rodeo Park and Tehama. Concentrations were simi-
lar at Rodeo Park and Churn Creek and then decreased sig-
nificantly at Balls Ferry. Between Balls Ferry and Tehama,
Cd and Cu concentrations followed one another closely. A

small, but significant increase in concentrations occurred at
Bend Bridge; then, concentrations decreased at Tehama.
Lead concentrations were not significantly different among
stations in the Sacramento River, although concentrations
decreased by 40% between Rodeo Park and Churn Creek.
Cytosolic Al concentrations ranged between 8 and 11mg·g–1

in the reach between Rodeo Park and Balls Ferry and then
declined significantly to 6mg·g–1 at Bend Bridge and
Tehama. The distribution pattern of Zn contrasted with that
of the other metals. Zinc concentrations at Rodeo Park and
Tehama were the same and significantly lower than concen-
trations at Churn Creek, Balls Ferry, and Bend Bridge.

Metal concentrations in sediments and relationships
with Hydropsyche

Concentrations of Cd, Cu, Hg, Pb, and Zn in streambed
sediments (<62mm) were typically greater in the Sacra-
mento River than in Cottonwood Creek (Table 3). The maxi-
mum concentrations of Cd, Cu, Hg, and Zn at Churn Creek
were three to nine times greater than concentrations in Cot-
tonwood Creek, and enrichment of these metals was still evi-
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Fig. 3. Metal concentrations in the whole body and cytosol ofH. californica from stations in the upper Sacramento River and Cotton-
wood Creek (metal reference site). Stations in the Sacramento River are numbered sequentially (1–5) from upstream to downstream, as
described in Fig. 1. Station 6 is Cottonwood Creek. (a) Al; (b) Fe; (c) Pb; (d) Cd; (e) Cu; (f) Zn. Note the scale breaks for the con-
centrations of Al, Fe, and Pb. Values are the mean ± 1 SE(shaded box) and the mean ± 1 SD (whiskers).
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dent in sediment at Tehama. Compared with those metals,
Pb was less enriched in Sacramento River sediment (maxi-
mum concentrations were about twice as high as in Cotton-
wood Creek sediment), and enrichment did not appear to
extend further downstream than Balls Ferry. The mean con-
centrations of Cd, Cu, Hg, Pb, and Zn among all stations
correlated significantly (results not shown), reflecting the
overall decrease in concentrations from upstream to down-
stream (Table 3).

Aluminum and Fe in streambed sediments of the Sacra-
mento River were not clearly enriched relative to those in
Cottonwood Creek sediment (Table 3). For both elements,
the lowest concentrations occurred at Tehama and the high-
est concentrations occurred at Balls Ferry; however, the
mean concentrations among all stations were not signifi-
cantly correlated.

With the exception of Cu, correlations between metal con-
centrations in streambed sediments andHydropsychewere
insignificant (Table 4). Most metals that were enriched in
sediments were also enriched inHydropsyche, and down-
stream attenuation in the concentrations of Cd, Cu, and Pb
occurred in both sediments and the insect. However, the spa-
tial distributions of Cd and Pb differed in some respects be-
tween the sample types, affecting the correlations. Spatial
patterns for Cd in sediments andHydropsychewere fairly
similar, except that maximum Cd concentrations in sedi-
ments and the insect occurred at adjacent stations: the for-
mer at Churn Creek and the latter at Rodeo Park (Tables 1
and 3). Lead contamination of sediments was only evident

between Rodeo Park and Bend Bridge, a distance of about
60 km, whereas cytosolic concentrations inHydropsycheat
Tehama indicated that contamination of bioavailable Pb ex-
tended at least 111 km downriver. Concentrations of Hg and
Zn in sediments and the insect were generally inconsistent.
Mercury contamination, evident in sediments, was not ob-
served inHydropsyche. Unlike the sediments, cytosolic (and
whole-body) Zn did not decrease downstream, although con-
centrations in samples from all five Sacramento River
stations were significantly higher than in the sample from
Cottonwood Creek.

Discussion

Metal concentrations inHydropsycheand streambed sedi-
ment samples taken in October 1996 from the Sacramento
River indicate that metal contamination occurs between
Redding (Rodeo Park) and Tehama (368 km from river
mouth), which is approximately 120 km downstream of the
Keswick Dam. Furthermore, analysis of metal accumulation
in the cytosol ofHydropsycheverified that this contamina-
tion includes biologically available Cd, Cu, Pb, and Zn.
Mercury contamination was evident in streambed sediments
but not in Hydropsyche.

Metal partitioning patterns were indicative of the location
and form of metal within the animal and thus provided some
insight into accumulation processes. Differences in the parti-
tioning of different metals between the cytosol and particu-
late (pellet) fractions in our study were consistent with
results reported by Cain and Luoma (1998) for the same ge-
nus. Most of the Al, Fe, and Pb inHydropsychewas present
in a particulate form(s). Although the pellet was not further
characterized, its content would include the exoskeleton, un-
digested gut content, cell membranes, larger intracellular
organelles, and insoluble intracellular granules. Other stud-
ies have suggested that substantial amounts of Al, Fe, and
Pb can be sorbed to external body surfaces (Krantzberg and
Stokes 1988; Hare et al. 1991; Cain et al. 1992). In un-
depurated animals, variable amounts of metals are also asso-
ciated with undigested gut content (Smock 1983; Hare et al.
1989; Cain et al. 1995). Thus, it is likely that much of the
Al, Fe, and Pb could be characterized as extracellular. Simi-
larities in the spatial patterns of noncytosolic, particulate Al,
Fe, and Pb, particularly downstream of Balls Ferry, suggest
that accumulation occurred by similar processes, possibly by
sorption to external body parts and (or) inadvertent ingestion
of sediment. There was no correspondence between concen-
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Station

Element 1 (Rodeo Park) 2 (Churn Creek) 3 (Balls Ferry) 4 (Bend Bridge) 5 (Tehama) 6 (Cottonwood Creek)

Al 76±0 67±1 84±2 75±2 58±2 70±0
Cd 2.7±0 3.6±0.2 1.5±0.1 0.9±0.2 1.3±0.1 0.4±0
Cu 240±10 250±0 100±0 75±2 78±2 61±2
Fe 56±1 56±2 61±2 49±2 48±2 50±2
Hg 0.40±0.01 0.39±0 0.15±0.01 0.08±0 0.25±0.02 0.06±0.01
Pb 36±2 36±1 24±0 14±1 14±1 14±0
Zn 410±10 550±20 310±10 220±10 230±10 110±0

Note: Values are the mean ± 1 SD (n = 3).

Table 3. Metal concentrations (mg·g dry weight–1 except for Al and Fe, which are mg·g–1) in streambed sediments col-
lected from the Sacramento River and Cottonwood Creek during October 21–23, 1996.

Correlation coefficientr

Element Sediment × whole body Sediment × cytosol

Al –0.57 0.57
Cd 0.51 0.46
Cu 0.83* 0.84*
Fe –0.75 –0.31
Hg –0.31 —
Pb 0.54 0.56
Zn 0.26 0.50

Note: The mean metal concentrations from all stations were used in the
analysis. Significant correlations (p < 0.05) are indicated with an asterisk.

Table 4. Pearson product-moment correlation coefficientsr
shown for correlations between sediments andH. californica
(whole body and cytosol) collected from the Sacramento River
and Cottonwood Creek during October 21–23, 1996.
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trations of Al and Fe in the particulate fraction (and whole
body) and in the cytosol. A small proportion (8–20%) of the
Pb body burden was recovered in the cytosol. Whole-body
concentrations of Pb were generally indicative of differences
in cytosolic Pb between uncontaminated (Cottonwood
Creek) and contaminated (Sacramento River) samples but
not among samples in the Sacramento River. It is possible
that the relatively narrow range of low concentrations in the
Sacramento River influenced the relationship. Significant
correlations between whole-body and cytosolic Pb have
been observed where Pb contamination is greater than in the
Sacramento River (Cain and Luoma 1998). In contrast with
Al, Fe, and Pb, a large portion of the total Cd, Cu, and Zn
occurred in the cytosol, which explains the high degree of
correspondence between cytosolic and whole-body concen-
trations for these elements.

The sampling design was not able to either isolate the
source of metal or completely delineate the downstream ex-
tent of contamination. However, the spatial patterns of Cd,
Cu, and Pb inHydropsycheare consistent with documented
inputs of dissolved and particulate-bound metals from min-
eralized areas upstream of Keswick Reservoir (Nordstrom et
al. 1977). Inputs of metals from Keswick Reservoir increase
during winter high river flow, creating a seasonal gradient in
dissolved and suspended particulate concentrations (Alpers
et al. 1999). Metal inputs appear to be preserved in stream-
bed sediments because concentration gradients were evident
in sediments downstream of Keswick Reservoir in October.
Thus, streambed sediments andHydropsychewere basically
consistent in characterizing Cd, Cu, and Pb contamination in
the Sacramento River.

Inconsistencies between environmental (e.g., sediments)
and biological indicators can arise from both abiotic and bi-
otic causes. In this study, metal concentrations in sediments
were determined for total sediment digestions, which may
not provide reliable estimates of bioavailable metal. Further-
more, exposure pathways forHydropsyche, a filter-feeder,
are probably more closely related to metal concentrations in
water and food in suspended material than to those in bed
sediments. Physiological processes also influence metal con-
centrations and distributions in the organism. Relationships
between metal concentrations in streambed sediments and
Hydropsychewere generally not statistically significant, Cu
being the only exception. As discussed above, both sedi-
ments andHydropsycheexhibited concentration gradients
for Cd and Pb in the Sacramento River. However, the fea-
tures of those gradients differed between the sample types,
affecting the correlations. For Al, Hg, and Zn, the differ-
ences were more basic. While neither sedimentary nor
whole-body Al concentrations exhibited any obvious con-
tamination, cytosolic Al suggested increased exposure to bio-
available Al between Rodeo Park and Balls Ferry. However,
Al concentrations in the cytosol were very low relative to the
whole body, and it is possible that the cytosolic concentra-
tions reflect some low-level contamination of the cytosol by
particulate Al during the preparation of the sample. Mercury
concentrations in streambed sediments were elevated in the
upper Sacramento River relative to Cottonwood Creek.
However, concentrations inHydropsychewere < 0.1mg·g–1

at all stations, which appears to be indicative of background
concentrations for the Sacramento River watershed (Slotton

et al. 1997). Mercury contributions from the upstream acid
mine drainage site (Iron Mountain via Spring Creek) are ap-
parently not a major source to the river. Dissolved Hg con-
centrations in theSacramento River are low (< 0.4–2.2 ng·L–1).
The majority of Hg in suspension occurs with colloids in ox-
idizable and residual (mineral) phases (Alpers et al. 1999).
Evidently, these sources are not sufficient to cause Hg en-
richment inHydropsyche. Inconsistencies between Zn con-
centrations in bed sediments (<62mm) and in the cytosol of
Hydropsycheobserved in the Sacramento River have been
observed in the Clark Fork River, also (Cain and Luoma
1998). Zinc accumulation in the cytosol reflected gross dif-
ferences in contamination (e.g., between uncontaminated
and contaminated sites) but was inconsistent with some en-
vironmental indicators of metal gradients (e.g., bed sediment
concentrations). One explanation is that Zn uptake is rela-
tively slow (Hare et al. 1991) and (or) that efflux of excess
Zn from the cytosol is relatively rapid.

Metal exposures inHydropsychein the Sacramento River
can be placed into context by comparison with rivers in other
basins. A fairly extensive data set is available from the Clark
Fork, a mining-impacted river in Montana. Over a 7-year
period, annual Cd concentrations (whole body) inHydro-
psychesp. from the most heavily contaminated reach of the
Clark Fork varied from approximately 1.5 to 3mg·g–1

(Hornberger et al. 1997). Cytosolic Cd concentrations in this
same area ranged from approximately 0.25 to 1.5mg·g–1

(Cain and Luoma 1998). Some of the highest concentrations
in the Clark Fork are similar to Cd concentrations at Rodeo
Park near Redding (2.16mg·g–1 in the whole body and
1.27mg·g–1 in the cytosol). Concentrations of Cu, Pb, and Zn
in the Sacramento River appear to be indicative of moderate
contamination, relative to other studies (Cain et al. 1992;
Hornberger et al. 1997). Metal concentrations in samples
from Cottonwood Creek are characteristic of uncontami-
nated rivers (Cain et al. 1992; Fuhrer et al. 1994; Hornberger
et al. 1997; Slotton et al. 1997).

High tissue concentrations can be symptomatic of toxic
effects (Jarvinen and Ankley 1999). However, dose–response
relationships are complex, and application of threshold con-
centrations observed in laboratory studies for a few test spe-
cies to a natural population of a different species or to a
whole community is prone to inherent uncertainty. Also, the
effects of simultaneous, multiple-metal exposures that occur
in nature are poorly understood. Nonetheless, the results for
Cd seem pertinent to any future consideration of ecological
risk in the upper Sacramento River. It is worth noting that
tissue concentrations of Cd were comparable with concen-
trations inHydropsychein the upper Clark Fork River where
metal exposure is considered a factor affecting changes in
the composition and abundance of benthic macroinvertebrates
(McGuire 1995). WhileHydropsyche, a relatively metal-
tolerant organism (Spehar et al. 1978; Clements et al. 1992),
might exhibit no obvious effect, more metal sensitive taxa
could be affected. As in the Clark Fork (Cain and Luoma
1998), a large proportion (>50%) of the Cd accumulated by
Hydropsychewas associated with the cytosol. Because pred-
ators can efficiently assimilate cytosolic metals from their
prey (Reinfelder and Fisher 1991, 1994; Wallace and Lopez
1997), food could be an important source of Cd to higher
trophic animals such as fish.
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Conclusions
Comparison of metals accumulated in the whole body and

the cytosol of caddisfly larvae facilitated interpretations of
the metal exposures, relative to metal concentrations in stream-
bed sediments, in the upper Sacramento River, downstream
of Keswick Reservoir. Metal concentrations in the cytosol
indicated exposure to elevated concentrations of bioavailable
Cd, Cu, Pb, and Zn. Exposures, compared with a regional
reference sample, were greatest for Cd. The downstream
concentration patterns indicated a primary upstream source
of Cd, Cu, and Pb near or upstream from Redding (river km
479), consistent with concentration gradients in streambed
sediments and documented inputs from Iron Mountain mine
and Shasta Lake, which receives drainage from abandoned
mining areas. The data did not delineate the downstream ex-
tent of general contamination and bioavailable metals; how-
ever, it was evident that bioavailable forms of these metals
occurred downstream as far as Tehama (river km 368),
120 km downstream of the Keswick Dam.
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