Supporting Information for ES0615122

Characterizing dissolved Cu and Cd uptake in terms of the biotic ligand and biodynamics using enriched stable isotopes

Marie-Noële Croteau* and Samuel N. Luoma

U.S. Geological Survey, 345 Middlefield Road, MS465, Menlo Park, CA 94025, USA

*Corresponding author phone: 650-329-4424; fax 650-329-5590; email: mcroteau@usgs.gov

7 pages (4 Tables, 4 equations, 1 Figure)

	Deionised	Soft	Moderately hard	Hard	
Ca^{2+} (µM)	0	174	349	698	
Mg^{2+} (μM)	0	249	499	998	
Na^+ (μM)	0	571	1143	2286	
K^+ (μM)	0	27	54	107	
Cl ⁻ (µM)	0	27	54	107	
SO_4^{-2} (µM)	0	424	848	1695	
CO_{3}^{-2} (µM)	0	571	1143	2286	
Hardness (mg CaCO ₃ l^{-1})	0	40-48	80-100	160-180	
pH	6.1	7.6	7.8	7.8	
$^{65}Cu^{2+}$	100 ^a	6.88	3.01	1.74	
$\frac{106}{106}$ Cd ²⁺	100 ^a	89.9	81.9	73.2	
^a Experimental solutions were assumed free of ligands					

TABLE S1. Ionic composition (nominal), hardness, pH and proportion of free tracer	
ions in each experimental media as determined by WHAM 6.0	

TABLE S2. Dissolved tracer concentrations measured before and after 24 h exposure; n=3 for
concentrations at time 0 and 24; n=6 for the average (AVG) concentrations. 8 snails were exposed to
tracers in 1-L jar (1 jar per treatment)

Madia	Two of the out	[⁶⁵ Cu] μg l ⁻¹ (±95% C.I.)			$[^{106}$ Cd] µg l^{-1} (±95% C.I.)			
Media	Treatment -	T ₀	T ₂₄	AVG	_	T ₀	T ₂₄	AVG
DI	Control	0.003 ± 0.001	0.08 ± 0.02	0.04 ± 0.04		0.001 ± 0.001	0.001 ± 0.001	0.001 ± 0.001
DI	0.1-ppb	0.12 ± 0.003	0.11 ± 0.01	0.11 ± 0.01		0.11 ± 0.001	0.03 ± 0.002	0.07 ± 0.04
DI	1-ppb	1.1 ± 0.01	0.60 ± 0.05	0.88 ± 0.24		1.1 ± 0.004	0.26 ± 0.02	0.7 ± 0.4
DI	10-ppb	11.2±0.3	6.9±0.5	9.1±1.9		11.4±0.3	7.6±0.7	9.5±1.7
DI	100-ppb	111±4	97±1	104±6		103±4	93±1	98±5
DI	300-ppb	320±12	299±21	310±14		299±12	289±20	294±11
SO	0.1-ppb	0.18 ± 0.01	0.27 ± 0.02	0.23 ± 0.04		0.12 ± 0.002	0.09 ± 0.002	$0.10{\pm}0.01$
SO	1-ppb	1.2 ± 0.1	0.83 ± 0.03	1.0 ± 0.2		1.1 ± 0.03	0.56 ± 0.03	0.84 ± 0.25
SO	10-ppb	11.1±0.1	7.8±0.6	9.5±1.5		11.3±0.2	8.5±0.5	9.9±1.3
SO	100-ppb	111±1	91±7	101±9		102±1	94±6	98±4
SO	300-ppb	325±3	288±14	306±18		303±2	284±10	293±9
MO	Control	0.11±0.01	0.13±0.01	0.12 ± 0.01		0.003 ± 0.001	0.004 ± 0.005	0.003 ± 0.002
MO	0.1-ppb	0.19 ± 0.01	$0.19{\pm}0.01$	0.19 ± 0.01		0.11±0.01	0.07 ± 0.01	0.09 ± 0.02
MO	1-ppb	0.83±0.02	0.77±0.01	0.80 ± 0.03		1.1±0.02	0.75±0.01	0.91±0.14
MO	10-ppb	8.6±0.14	7.4±0.02	8.0±0.5		10.8 ± 0.1	9.3±0.1	10.0±0.7
MO	100-ppb	95±1	87±1	91±4		88±1	86±2	87±1
MO	300-ppb	222±2	214±2	218±4		257±2	254±1	256±2
HA	Control	0.25 ± 0.01	0.26 ± 0.01	$0.26{\pm}0.01$		0.002 ± 0.005	0.001 ± 0.001	0.001±3
HA	0.1 - ppb	0.34±0.01	0.33 ± 0.01	0.33 ± 0.01		0.11±0.01	0.10 ± 0.01	$0.10{\pm}0.01$
HA	1-ppb	1.0 ± 0.03	0.88 ± 0.01	$0.94{\pm}0.05$		1.1 ± 0.03	0.95 ± 0.01	1.0 ± 0.04
HA	10-ppb	9.1±0.04	7.5±0.1	8.3±0.7		10.5 ± 0.1	10.2 ± 0.1	10.3±0.2
HA	100-ppb	91±1	85±1	88±3		106±1	105±1	106±1
HA	300-ppb	284±1	273±3	279±5		293±1	288±3	291±3

TABLE S3.	Some metal	-binding	characteristics	from	fish-gill	studies ^a

Species	Metal	log K _{gill}	B _{max} (nmol g ⁻¹)	Hardness	Reference
Rainbow trout ^b	Cu	8.4	1.88	soft	35
Rainbow trout ^b	Cu	9.9	3.63	hard	35
Fathead minnow ^c	Cu	7.4	30	Very soft	14
Fathead minnow ^c	Cd	8.6	2	Very soft	14
Rainbow trout ^b	Cu	7.9	1.85	soft	17
Rainbow trout ^b	Cu	9.2	0.59	hard	17
Rainbow trout ^b	Cu	7.50	30	Very soft	23
Brook trout ^d	Cu	7.25	60	Very soft	23
Rainbow trout ^b	Cd	7.6	1.78	Soft	19
Rainbow trout ^b	Cd	7.3	1.78	Hard	19

^aExposure time is 3 h for all studies, except in 23 where fish were exposed for 24 h ^bOncorhynchus mykiss ^cPimephales promelas ^dSalvelinus fontinalis

BLM	Biodynamic model
Model parameters are determined upon high exposure concentrations (often not realistic environmentally), i.e., saturation kinetics is required to infer B_{max} and $log K$	Parameters determined upon low exposure concentrations
Provides a mechanistic understanding of the interaction of metals with biological surfaces	Determines the outcome (influx rate) of metal uptake mechanisms
Takes into account metal speciation and competing ions	Metal speciation empirically taken into account
Does not consider physiological loss rates Does not consider dietary exposures	Unifies dissolved uptake, dietary uptake and loss
In practice biological parameters ($log K$, B_{max}) are often inferred from correlation with toxicity data.	Biodynamic parameters determined empirically
Relates toxicity to the fraction of physiological active sites impacted by reactive metal species	Consistent with the concept that toxicity occurs when metal influx rates exceed rates of loss and detoxification, the model suggests that dissolved toxicity might be predicted from k_u , but correlations with toxicity have not been directly investigated

TABLE S4. Some differences between the BLM and the Biodynamic model

Calculation of accumulated ¹⁰⁶Cd concentrations. The relative abundance of ¹⁰⁶Cd is determined using the signal intensities of each Cd isotope in the standards used to calibrate the ICP-MS. For example,

$$p^{106} = \text{Intensity} \quad \frac{{}^{106}\text{Cd}}{{}^{106}\text{Cd} + {}^{108}\text{Cd} + {}^{110}\text{Cd} + {}^{111}\text{Cd} + {}^{112}\text{Cd} + {}^{113}\text{Cd} + {}^{114}\text{Cd}} \qquad (1)$$

Concentrations of ¹⁰⁶Cd in the experimental organisms ([¹⁰⁶Cd]_{\hat{e}}) are calculated as the product of p¹⁰⁶ and the total Cd concentrations inferred by the ICP-MS software from tracer intensity ([T¹⁰⁶Cd]):

$$[^{106} Cd]_{\hat{e}} = p^{106} \times [T^{106} Cd]$$
(2)

Total Cd concentrations inferred from the intensity of the most abundant isotope are then used to derive the original load of tracer ($[^{106}Cd]^0_{e}$) that occurred in each sample in the absence of a spike, e.g.,

$$[^{^{106}}Cd]^{_{e}}_{_{e}} = p^{^{106}} \times [T^{^{114}}Cd]$$
(3)

Consequently, net ¹⁰⁶Cd uptake (Δ [¹⁰⁶Cd]_ê) is [¹⁰⁶C]_ê as derived from the total experimental Cd inferred from ¹⁰⁶Cd signal (equation 2) minus the pre-existing load of ¹⁰⁶Cd ([¹⁰⁶Cd]_e⁰ from equation 3,

$$\Delta [{}^{106} \text{Cd}]_{e} = [{}^{106} \text{Cd}]_{e} - [{}^{106} \text{Cd}]_{e}^{0}$$
(4)

FIGURE S1. Metal uptake rates (nmoles $g^{-1} d^{-1}$) in *L. stagnalis* at different water hardness. ¹⁰⁶Cd and ⁶⁵Cu concentrations (soft tissue) were determined in snails exposed for 24 h to waterborne metals at concentrations ranging from 0.004 to 2778 nM for ¹⁰⁶Cd and from 0.7 to 4770 nM for ⁶⁵Cu in deionised (DI) and synthetic water (SO, MH, HA). Each symbol represents mean metal concentrations of 8 individuals and 6 water samples ($\pm 95\%$ confidence interval). Open circles are for controls; Solid circles are for the experimental snails. Curves represent nonlinear regression fits to Michaelis-Menten equation.