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Summary Ground-water recharge estimates for selected locations in the eastern half of the
United States were obtained by Darcian and chloride-tracer methods and compared using sta-
tistical analyses. Recharge estimates derived from unsaturated-zone (RUZC) and saturated-zone
(RSZC) chloride mass balance methods are less variable (interquartile ranges or IQRs are 9.5 and
16.1 cm/yr, respectively) and more strongly correlated with climatic, hydrologic, land use, and
sediment variables than Darcian estimates (IQR = 22.8 cm/yr). The unit-gradient Darcian esti-
mates are a nonlinear function of moisture content and also reflect the uncertainty of pedo-
transfer functions used to estimate hydraulic parameters. Significance level is <0.001 for
nearly all explanatory variables having correlations with RUZC of <�0.3 or >0.3. Estimates of
RSZC were evaluated using analysis of variance, multiple comparison tests, and an exploratory
nonlinear regression (NLR) model. Recharge generally is greater in coastal plain surficial aqui-
fers, fractured crystalline rocks, and carbonate rocks, or in areas with high sand content. West-
ernmost portions of the study area have low recharge, receive somewhat less precipitation, and
contain fine-grained sediment. The NLR model simulates water input to the land surface fol-
lowed by transport to ground water, depending on factors that either promote or inhibit water
infiltration. The model explains a moderate amount of variation in the data set (coefficient of
determination = 0.61). Model sensitivity analysis indicates that mean annual runoff, air temper-
ature, and precipitation, and an index of ground-water exfiltration potential most influence
estimates of recharge at sampled sites in the region. Soil characteristics and land use have less
influence on the recharge estimates, but nonetheless are significant in the NLR model.
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Introduction

Recharge is a major component of the ground-water system
and has important implications for shallow ground-water
quality. Recharge commonly is estimated at the watershed
scale using simple water-budget methods or numerical
ground-water flow models. Whereas these methods provide
an average recharge estimate for an area, recharge can vary
substantially both within and between watersheds because
of variations in topography, sediments, and climate. Re-
charge estimates with site-specific data, such as ground-
water levels, ground-water ages, and unsaturated-zone data
at points, can complement basin-scale methods. A large
number of point estimates over a region, if estimated with
reasonable certainty, would indicate the spatial distribution
of recharge. The variability of recharge is key to under-
standing the susceptibility of aquifers to contamination
from surface-derived sources.

Recharge may be categorized as diffuse or focused. Dif-
fuse recharge refers to that which occurs over large areas as
water from precipitation infiltrates and percolates through
the unsaturated zone to the water table. Focused recharge
refers to water moving downward to an aquifer from a sur-
face-water body, such as a lake, stream, or canal. Arid re-
gions commonly are characterized by deep water tables,
losing streams, and focused recharge. Diffuse recharge usu-
ally dominates in humid portions of the United States,
where shallow water tables and gaining streams are com-
mon. Focused recharge that does occur in humid areas is
usually from surface runoff into land-surface depressions
or macropores, followed by infiltration.

Diffuse recharge was estimated at 48 locations in south-
ern New Jersey, using a Darcian method based on pedo-
transfer functions (Baehr et al., 2003). These functions
relate hydraulic parameters to easily measured sediment
properties such as percent sand, silt, and clay, and are com-
monly used at regional scales owing to the difficulty and
cost of directly measuring hydraulic conductivity (Görres
and Gold, 1996; Petach et al., 1991; Soutter and Pannatier,
1996). A companion study (Nolan et al., 2003) evaluated the
spatial variability of the recharge estimates and analyzed
relations with sediment, landscape, and water-quality data.
Multiple linear regression (MLR) was attempted to augment
kriging predictions, but correlations between recharge and
potential explanatory variables generally were poor. Topo-
graphic relief within the study area varied insufficiently to
yield strong correlations between recharge estimates and
landscape factors. We hypothesize that at a broad scale,
such as a multi-state region, increased systematic variation
in soil, landscape, and climate variables will facilitate im-
proved correlations with recharge, assuming that recharge
can be estimated with reasonable certainty. These correla-
tions can be exploited with empirical models to identify fac-
tors that influence recharge and, ultimately, to predict
recharge in unsampled areas. Accordingly, the objectives
of the research described in this paper are to first obtain
consistent estimates of recharge across a large multi-state
region, and then to identify factors that significantly influ-
ence recharge at this scale.

Recharge in the current study was estimated using
ground-water and sediment core data collected by the US
Geological Survey’s (USGS’s) National Water Quality Assess-
ment (NAWQA) Program, in collaboration with the Ground
Water Resources Program (GWRP). Data interpretation was
limited to the eastern half of the US because the methods
applied are designed to estimate diffuse recharge. Sites in
eastern Nebraska and southeastern Texas were included in
the analysis because associated aquifers are areally exten-
sive in the east–west direction (Fig. 1). We anticipated that
including these sites would enhance correlations between
the recharge estimates and climate and landscape vari-
ables, for reasons discussed above. The climate of eastern
Nebraska is typical of a humid continental region, with a
mean annual precipitation of 720 mm (Fredrick et al.,
2006). Mean annual precipitation near sampled sites in
southeastern Texas is 1320 mm (Land et al., 1998).

The study area comprises the following principal aqui-
fers: the glacial aquifer system in the northeast and mid-
west; the coastal lowlands aquifer system; Piedmont
crystalline-rock aquifers; surficial aquifer system and the
Floridan aquifer system; and the Northern Atlantic Coastal
Plain aquifer system (Fig. 1). Also shown in the figure are
boundaries of NAWQA study units for collection of sediment
cores and ground-water samples used in the study.

To meet the second objective, we introduce a nonlinear
regression (NLR) model, which differs from previous empir-
ical approaches. Previous regression models used MLR to
predict recharge based primarily on precipitation data (De-
lin et al., 2000; Nichols and Verry, 2001; Rangarajan and
Athavale, 2000; Sophocleous, 1992) or soil and landscape
variables (Nolan et al., 2003). An NLR model (the SPARROW
model) was developed to predict nitrogen yield and phos-
phorus concentrations in streams based in part on stream-
channel transport characteristics and spatially referenced
watershed data (Smith et al., 1997). The SPARROW model
includes linear input terms and multiplicative exponential
terms describing either delivery or in-stream loss of con-
taminants. The nonlinear form seems appropriate to simu-
late water inputs and factors that proportionally increase
or decrease water infiltration. We anticipated that applying
NLR to a consistent set of ground-water recharge estimates
would help identify factors that affect recharge in the
region.

Methods

Sediment cores and ground-water samples were collected
during installation of monitoring wells as part of NAWQA
studies shown in Table 1 for principal aquifers of interest.
Samples were analyzed by the USGS’s National Water Quality
Laboratory or in soil physics laboratories (for sediment bulk-
physical properties and soil-water extracts) to provide esti-
mates of ground-water recharge by the Darcian method
and by chloride-tracer methods applied to the saturated
zone and unsaturated-zone pore water. The recharge values
were initially compared by examining correlations with spa-
tial data, before developing an empirical model of recharge.

Laboratory analysis of sediment properties

Sediment cores 0.6 m long and 5 cm in diameter were ob-
tained about every 1.5 m from land surface to the water



Figure 1 Sediment coring and ground-water sampling locations in the eastern half of the United States, with principal aquifers.
Study unit definitions are: CNBR, Central Nebraska Basins; TRIN, Trinity River Basin; WMIC, Western Lake Michigan Drainages; WHMI,
White–Miami River Basins; GAFL, Georgia–Florida Coastal Plain; PODL, Potomac–Delmarva River Basins; CONN, Connecticut,
Housatonic, and Thames River Basins.

Table 1 Medians of water level and measured unsaturated-zone sediment properties by National Water-Quality Assessment
Program study area (excludes irrigated sites)

Identifier NAWQA study area Number of
sediment
cores

Depth to
water, m

Percent Bulk
density,
g/cm3

Volumetric
moisture
content,
cm3/cm3

Sand Silt Clay

CNBR Central Nebraska Basins 26 7.4 12.4 78.0 9.5 1.59 0.19
TRIN Trinity River Basin 29 6.4 37.4 55.1 7.3 1.57 0.16
WMIC Western Lake Michigan Drainages 4 4.9 87.6 9.9 2.5 1.85 0.09
WHMI White-Miami River Basins 9 2.3 10.5 70.4 14.8 1.88 0.26
GAFL Georgia–Florida Coastal Plain 6 8.1 89.1 8.5 2.3 1.50 0.15
PODL Potomac–Delmarva River Basins 15 4.1 66.4 30.5 2.9 1.44 0.20
CONN Connecticut, Housatonic,

and Thames River Basins
31 6.1 86.9 11.0 1.8 1.49 0.16
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table during installation of monitoring wells during the fall
of 2002 through the winter of 2004. Nearly 500 cores were
obtained (based on multiple sampling depths at each site)
and analyzed to determine sand, silt, and clay percentages
and bulk density for use with pedotransfer functions; mois-
ture content (h) for use in Darcian calculations of water
flux; and pore-water chloride concentration for recharge
estimation by unsaturated-zone tracer. During data analysis
we obtained one recharge estimate by each method per
site; for example, the deepest unsaturated-zone water flux
from the pedotransfer method was used to infer Darcian re-
charge. Sand (>50 lm diameter), silt (2–50 lm), and clay
(<2 lm) fractions were determined by optical diffraction
using a Coulter LS-230 particle-size analyzer (Gee and Or,
2002), which measures particles from 0.04 lm to 2 mm in
size. Particles greater than 2 mm were separated with ASTM
sieves ranging from 2 to 32.5 mm and later integrated into
the particle-size distribution. Bulk density was determined
by the core method (Grossman and Reinsch, 2002), and soil
moisture content was determined gravimetrically (Topp and
Ferre, 2002). To determine chloride concentration in pore
water, the sediment cores were dried and mixed with water
at a 1:10 weight ratio. Chloride in the extract solution was
determined by ion chromatograph (McMahon et al., 2003).
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Methods of recharge estimation

Recharge was estimated by the Darcian method and two
chloride-tracer methods. Darcian estimates based on pedo-
transfer functions are referred to in this paper as ‘‘RPTF’’.
Nonirrigated sites in the eastern half of the US resulted in
76 estimates of RPTF, 108 estimates using chloride in soil
pore water as an unsaturated-zone tracer (RUZC), and 108
estimates using chloride in ground water as a saturated-
zone tracer (RSZC). RPTF estimates could not be obtained
at all sites because of missing textural, moisture content,
or bulk density data at some locations.
Darcian-pedotransfer method
In the unsaturated zone, steady vertical flow is described by
Darcy’s Law:

q ¼ �KðhÞ dw
dz
þ 1

� �
; ð1Þ

where q is flux density in cm/yr, dw/dz is the matric poten-
tial gradient (cm/cm), and K(h) is hydraulic conductivity in
cm/yr. If matric potential is constant with depth, then grav-
ity is the only driving force and dw/dz is equal to zero. In
such cases the magnitude of q equals that of the hydraulic
conductivity of the medium at the ambient water content.
This approach is called the unit-gradient assumption and
has been applied in a number of studies (Chong et al.,
1981; Gardner, 1964; Sisson, 1987). Conditions conducive
to unit-gradient water flux include location below the depth
of the zero flux plane (i.e., the plane of zero hydraulic gra-
dient in the unsaturated zone) and above the capillary fringe
and steady flow over time. Under the unit-gradient assump-
tion, a single K(h) measurement can indicate long-term aver-
age recharge rate in zones of steady downward flow in deep
unsaturated zones typical of arid regions (Nimmo et al.,
2003). Temporal variability of recharge in such cases is
dampened by physical averaging of flow paths (Nimmo
et al., 2002). Although the current study sampled shallow
unsaturated zones in a comparatively humid climate, damp-
ening of variations in measured soil tension has been ob-
served at shallow depths in central Indiana (Bayless, 2001).
Whereas short-term variations in soil tension and moisture
content were observed at depths of 0.6 m or less, measure-
ments were stable at depths of 0.9–1.5 m. Sampling depth
for sediment cores in the current study, which includes sites
in central Indiana, ranges from about 1 to more than 30 m.

We calculated unit-gradient water fluxes based on data
from the Rosetta program (Schaap et al., 1998, 2001). Re-
charge (downward flux) is the negative of q in Eq. (1), eval-
uated at the water table. Rosetta consists of hierarchical
pedotransfer functions for estimating van Genuchten
hydraulic parameters (van Genuchten, 1980) from bulk
physical properties, such as bulk density and percentages
of sand, silt, and clay. Several unit-gradient water fluxes
were calculated for each well location. The deepest water
flux that is above the capillary fringe is assumed to repre-
sent recharge (RPTF).

Chloride tracer methods
Recharge was estimated by two chloride tracer methods,
depending on the source of the chloride data: RUZC refers
to chloride concentration in the unsaturated zone (i.e.,
pore water from sediment cores used in RPTF estimates),
and RSZC refers to chloride concentration in the saturated
zone (i.e., in ground-water samples from the same wells
where coring took place). Thus, there is one RUZC estimate
and one RSZC estimate per well.

The chloride tracer method compares the rate of chloride
deposition on land surface with chloride concentration in the
unsaturated zone or saturated zone (Nimmo et al., 2003;
Scanlon et al., 2002). Chloride is conservative and its mass
inflow to the system must be balanced by mass outflow from
the system or by a change in storage of chloride in the unsat-
urated zone or saturated zone. Under natural conditions,
chloride is deposited on the land surface in precipitation
and dry deposition. Other natural sources, such as marine-
derived sediments and saline water in deep aquifers, were
determined to contribute insignificant quantities of chloride
to the study areas. Chloride may also be applied through the
activities of humans, predominantly agricultural practices.
Outflow (i.e., recharge) is from the unsaturated zone to
the water table. Recharge by this method is described as

R ¼ 1000 � ðClwetdep þ Cldrydep þ ClappliedÞ=Clwater; ð2Þ

where R is recharge (cm/yr) based on chloride data from the
unsaturated zone (RUZC) or saturated zone (RSZC); Clwetdep
and Cldrydep are chloride wet and dry atmospheric deposition
rates, respectively (mg/cm2/yr); Clapplied is the rate at
which chloride is applied by humans (mg/cm2/yr); and
Clwater is chloride concentration in the unsaturated zone
or saturated zone (mg/l). This equation assumes that all
precipitation infiltrates locally. In areas where total infiltra-
tion is less than total precipitation because of surface run-
off, the chloride tracer recharge value will overestimate
true recharge. Infiltration-excess runoff, however, is negli-
gible in the study area (about 7% of streamflow on average),
based on output from a watershed hydrology model (Beven
and Kirkby, 1979; Wolock, 1993) at sampled locations. Also,
some of the runoff flows onto nearby low-lying areas (i.e.,
surface water ‘‘runon’’), where it is a source of recharge.

Values for Clwetdep were obtained through the National
Atmospheric Deposition Program (NADP) (National Atmo-
spheric Deposition Program, 2006). Dry deposition of chloride
is not measured at NADP sites, but dry and wet deposition
data are available for sulfate, nitrate, and ammonia. Wet
deposition accounted for 92%, on average, of total deposi-
tions of these constituents (coefficient of variation 3%) in
2002 (US Environmental Protection Agency, 2006). There-
fore, it was assumed for purposes of this study that wet depo-
sition also accounted for 92% of the total chloride deposition
(i.e., dry chloride deposition rate, Cldrydep, was set equal to
8.7% of the wet rate). The primary source of chloride applied
to land surface by humans is agricultural chemicals, in partic-
ularmuriate potash (KCl), which is applied as a potassium fer-
tilizer for crops. County-level estimates of potassium inputs
to land surface have been compiled (Ruddy et al., 2006).
For each sampled well, chloride input was estimated by
assuming that muriate potash accounted for 90% of applied
potassium (US Department of Agriculture, 2006) and by
weighting the county-level fertilizer data on the basis of agri-
cultural land use within 500-m radius circular areas (buffers)
around sampled wells; i.e., chloride input was multiplied by
the ratio of agricultural land in the well buffer to the total
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agricultural land in the county. For weighting purposes, agri-
cultural lands comprise row crops, small grains, and orchards
and/or vineyards. The 500-m radius buffer may not corre-
spond to the actual recharge area of sampled wells, but is a
reasonable approximation. NAWQA monitoring wells have
shallow screened interval depths (typically from 7 to 9 m)
and sample recently recharged ground water (typically
<10 years). Also, land cover is comparatively homogeneous
within ground-water land-use studies conducted by NAWQA,
such that land use near a well is similar to that elsewhere in
the monitoring network.

Estimates of RSZC used chloride data from wells sampled
by NAWQA personnel during 2002–2004. All wells were sam-
pled according to procedures described by Koterba et al.
(1995), and dissolved Cl was analyzed according to proce-
dures in Fishman (1993).
Spatial data for empirical modeling of recharge
estimates

Soil, climate, topographic, and land-use data were compiled
for sampled wells using a geographic information system
(GIS) to generate explanatory variables for empirical model-
ing of recharge. Land-use data categories were compiled as
percentages of well buffers, and the remaining variables
(excluding presence-or-absence type variables) were com-
piled as weighted averages within buffers. Selected vari-
ables described here are significantly correlated with
recharge estimates. A complete list (including evapotranspi-
ration, for example) is provided in Appendix 1.

Soil data came from the US Department of Agriculture’s
State Soil Geographic (STATSGO) maps, which are produced
at 1:250,000 scale by generalizing soil survey data (US
Department of Agriculture, 1994). Initially compiled at 1-
km resolution (Wolock, 1997) by converting soil mapping
units to grid cells in a GIS, the STATSGO data were recom-
piled at 100-m resolution in the current study to simulate lo-
cal-scale variation in soil properties.

Mean annual precipitation and temperature for 1980–97
were derived from DAYMET, a climate model that predicts
daily temperature, precipitation, humidity, and radiation
based on digital elevation data and observed values of pre-
cipitation and minimum and maximum temperature from
weather stations (Thornton and Running, 1999). Several
hydrologic factors were compiled to see if local recharge
estimates were correlated with flow characteristics esti-
mated by watershed models. Estimated percentage of Hor-
tonian overland flow in total streamflow was calculated for
the entire country using 5-km-grid cells with TOPMODEL, a
rainfall-runoff watershed model that integrates climate
and landscape characteristics (Wolock, 2003d). TOPMODEL
simulates water flow in a watershed beginning from when
water enters the watershed as precipitation until it exits
as streamflow. Hortonian overland flow is generated when
precipitation exceeds the infiltration capacity of the soil.

Base flow is the component of streamflow attributable to
ground-water discharge to streams. The base-flow index (BFI)
is the ratio of base flow to total streamflow, expressed in per-
cent. These percentages were determined on a 1-km grid by
interpolating from point BFI values at USGS stream gages
(Wolock, 2003a). The point values were computed from time
series of historical daily streamflow values using an auto-
mated hydrograph separation computer program (Wolock,
2003c). Mean annual base flow was estimated by multiplying
the grid of BFI values by a grid of mean annual runoff values
(Gebert et al., 1987). Computation of the subsurface-flow
contact time index is based on a simple conceptualization
of the lateral movement of both shallow and deep saturated
subsurface flow toward a stream (Vitvar et al., 2002). The in-
dex was calculated using 1:250,000-scale digital elevation
maps (US Geological Survey, 1987) and the STATSGO data
describing subsurface hydraulic characteristics. Subsurface-
flow contact time increases as the soil porosity and ridge-
to-valley flow length increase, and decreases as topographic
slope and saturated hydraulic conductivity increase. The in-
dex is intended to describe relative differences in subsurface
contact time among watersheds, and agreed well with esti-
mates ofmean baseflow residence time derived from isotopic
data (Vitvar et al., 2002).

Topographic wetness index (TWI) quantifies the effect of
topography on the redistribution of moisture within a wa-
tershed. High values of TWI can indicate locations within a
watershed where the water table intersects the land sur-
face. Hence, TWI values indicate the potential caused by
the effects of topography for ground-water exfiltration.
The TWI index is given by ln(a/tanb), where a is the upslope
area per unit contour length and tanb is the slope gradient
along which drainage occurs. TWI values were computed at
1-km resolution from digital elevation data (Wolock and
McCabe, 1995).

Land-use percentages are based on a combination of 30-
m resolution National Land Cover Data (NLCD 92) derived
from 1992 Landsat imagery (Vogelmann et al., 2001) and
USGS Land Use and Land Cover (LULC) data derived from
1970s to 1980s aerial photography (US Geological Survey,
1990). Residential, orchards/vineyards/other, and tundra
categories of NLCD 92 data were reclassified using LULC
data because some land covers are difficult to distinguish
with satellite imagery (Nakagaki and Wolock, 2005).
Statistical methods

Statistical analyses of recharge estimates consisted of sum-
mary statistics, Spearman correlations, and analysis of var-
iance (ANOVA) and multiple comparison tests (MCTs) on
ranked data to assess relations with potential explanatory
variables. Nonlinear regression (NLR) was used to identify
factors – in a multi-variate context – that most influence
recharge for the sites studied. Recharge depends not on a
single factor but on the simultaneous influence of several
factors representing climate, soil, and landscape processes.
These interactions cause some variables, such as TWI, to
emerge as significant in NLR even though they are insignifi-
cant in univariate correlations. For this reason, additional
variables not shown in Table 2 were screened with the
NLR model, including all available STATSGO, NLCDe 92, Na-
tional Resources Inventory (US Department of Agriculture,
1995), and water-use variables (Solley et al., 1998) (Appen-
dix 1). Over 100 variables were tested in the NLR model.

The NLR model has a multiplicative structure
with explanatory variables representing water input
(precipitation) and factors that either enhance or inhibit



Table 2 Univariate correlations between estimated recharge and potential explanatory variables screened in the nonlinear
regression model (L, length; T, time; %, percent)

Variable Spearman correlation coefficient (p-value)

Chloride tracer in
saturated zone (RSZC)

a
Chloride tracer in
unsaturated zone (RUZC)

b
Darcian-pedotransfer
method (RPTF)

Climate and hydrology
Mean annual base flow, L/T 0.426 0.437 0.228 (0.050)
Hortonian overland flow, % �0.554 �0.443 �0.136 (0.250)
Mean annual runoff (1951–80), L 0.329 0.362 0.207 (0.074)
Subsurface flow contact time, T �0.305 �0.357 �0.046 (0.697)

Land cover and management
Orchards/vineyards/other, % 0.111 (0.256) 0.357 0.086 (0.461)
Woody wetlands, % 0.256 0.304 (0.001) 0.041 (0.727)
Irrigated acres, micro-irrigation systems, L2 0.175 (0.073) 0.443 0.050 (0.670)
Irrigated acres, surface-irrigation systems, L2 �0.338 �0.346 �0.208 (0.074)

Measured sediment properties
Sand above water table, % 0.256 0.307 (0.001) 0.146 (0.207)
Silt above water table, % �0.258 �0.320 �0.159 (0.171)

STATSGO soil properties or groups
Soil hydrologic group A, % 0.369 0.420 0.187 (0.107)
Soil hydrologic group A/D, % 0.294 0.406 0.099 (0.399)
Soil loss tolerance factor �0.392 �0.376 �0.205 (0.078)
Soil shrink–swell potential �0.374 �0.322 �0.224 (0.054)
Vertical permeability, L/T 0.319 0.382 0.142 (0.225)
Permeability of least permeable layer, L/T 0.353 0.366 0.083 (0.480)
Available water capacity, fraction �0.124 (0.207) �0.336 �0.187 (0.109)
Organic matter, % by weight 0.237 (0.014) 0.329 �0.040 (0.732)
Sand, % 0.201 (0.038) 0.362 0.173 (0.139)
Silt, % �0.148 (0.131) �0.322 �0.153 (0.190)
Clay, % �0.247 (0.011) �0.337 �0.195 (0.098)
Soil <8 cm in size and passing a 0.074 mm sieve �0.230 (0.018) �0.351 �0.200 (0.086)
Entisols, % 0.217 (0.026) 0.320 �0.079 (0.500)
Histosols, % 0.407 0.407 0.101 (0.389)
a p-value < 0.01 for all variables, except as noted.
b p-value < 0.001 for all variables, except as noted.
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water transport to ground water. After the exhaustive
screening of variables in Appendix 1, those that remain in
the model either are significant at the 0.05 level or are con-
sidered conceptually important. The explanatory variables
are organized into water-input and transport components
described by

Ri ¼ bþ Ii � Ti þ ei; ð3Þ

where

Ii ¼
XN
n¼1

bnXn;i ð4Þ

Ti ¼ exp
XJ
j¼1

ajZj;i

 !
ð5Þ

and

b = intercept
Ri = natural log of ‘‘measured’’ recharge at sampling
point i, from estimation by measured chloride tracer in
the saturated zone (RSZC), ln(cm/yr)
Ii = total water input at i
Ti = proportional increase or decrease in water input at i
due to transport factors
Xn,i = normalized water input n at i, such as precipitation
or irrigation
Zj,i = normalized transport factor j at i
bn = coefficient for water input variable n
aj = coefficient for transport factor j
ei = model error at sampling point i

Recharge estimates were natural log transformed for use
in the NLR model, because this resulted in more constant
variance of model errors across the range of predictions,
as well as normally distributed errors. Predicted values of
recharge then were back transformed into real space for
plotting purposes using a ‘‘smearing’’ estimate (Helsel and
Hirsch, 1992). The smearing estimator converts log-trans-
formed values to original units (cm/yr in this case) using a
bias-correction factor, and is robust because it makes no
assumption regarding the distribution of regression
residuals.
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Independent variables (Xn,i and Zj,i) were normalized by
dividing by their mean values, so that regression coefficients
within each model component (Ii and Ti) can be compared to
ascertain the relative influence of variables on recharge.
Coefficients cannot be compared between components,
however, because Ii is linear and Ti is exponential. To en-
hance comparability of all variables, we evaluated model
sensitivity by relating changes in predicted recharge to
incremental changes in the independent variables. We com-
puted ‘‘relative sensitivity’’ (RS) as the absolute value of
percent change in recharge, in units of ln(cm/yr), for a 1%
change in an independent variable while holding the remain-
ing variables constant.

Results and discussion

Medians ofmeasured sediment texture, bulk density, and vol-
umetric moisture content are summarized by NAWQA study
area in Table 1. Sediment-texture data reflect regional vari-
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Figure 2 Histograms showing distributions of recharge estimates
zone chloride tracer (RUZC), and (c) the Darcian-pedotransfer meth
ations in unsaturated-zone characteristics. The median silt
content of sediment cores from WHMI and CNBR is 70% and
78%, respectively (see Table 1 for definition of NAWQA study
area acronyms). Wells in CNBR are completed in shallow gla-
cial sand lenses andWHMIwells are in relatively impermeable
glacial till. In contrast, sediment cores from WMIC, GAFL,
PODL, and CONNcontain on average 66–89% sand. GAFLwells
are completed in the Coastal Plain surficial aquifer and in the
Floridan aquifer; PODL wells are completed in the coastal
plain sand and gravel aquifer and in the Piedmont and Blue
Ridge aquifer; andWMIC and CONNwells are in sand and grav-
el aquifers in valley fill glacial outwash. Median sand and silt
contents of TRIN cores, in the coastal lowlands, are some-
what less (37% and 55%, respectively).

Statistical analysis of recharge estimates

Recharge estimates for all sites are shown in Appendix 1.
Estimates of RPTF, RSZC, and RUZC are highly skewed
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(Fig. 2). Statistical distributions of RSZC and RUZC (Fig. 2a and
b, respectively) appear similar, but the latter has a some-
what lower median (4.3 cm/yr compared with 5.9 cm/yr
for RSZC). The greater median and variability of RSZC
(IQR = 16.1 versus 9.5 cm/yr for RUZC) may reflect preferen-
tial flow, which causes saturated-zone chloride estimates of
recharge to exceed unsaturated zone estimates by as much
as two orders of magnitude (Scanlon et al., 2002). Saturated
zone estimates integrate water fluxes over areas ranging
from a few to several thousand square meters, areas much
larger than those sampled by unsaturated zone methods
(Scanlon et al., 2002). Hence, the RSZC method is more likely
than the RUZC method to capture preferential flow, which
can occur as focused recharge beneath small-scale topo-
graphic depressions at lowland sites that received surface-
water run-on (Delin et al., 2000). In contrast, RUZC and RPTF
are point estimates. The IQR of RPTF (22.8 cm/yr) is the
highest of the three methods, indicating greater variability
(Fig. 2c). RPTF statistics are influenced by the maximum va-
lue of 1140 cm/yr. Although such a high value might result
from focused recharge in topographically low lying areas,
it could also result from measurement inaccuracies. The
RPTF estimates are highly uncertain because K(h) is sensitive
to small changes in moisture content, and because the esti-
mated hydraulic parameters are subject to the uncertainty
of the Rosetta model. The latter uncertainty arises for sev-
eral reasons: the estimated hydraulic properties are a func-
tion of observed matric potential and soil texture; the
number of samples in the Rosetta database varies from
about 200 to 2100 depending on the hydraulic property of
interest; and, silt and clay textures are somewhat underrep-
resented in the Rosetta database (Schaap et al., 2001).

Recharge estimates by chloride tracer are significantly
correlated with environmental factors (Table 2). Variables
with univariate correlations of <�0.3 or >0.3 for RUZC are
shown in the table. Spearman correlations are positive for
mean annual base flow, runoff, and factors related to
coarse-grained soils (such as percent sand and ‘‘soil hydro-
logic group A’’); and negative for Hortonian overland flow
and factors related to fine-grained soils (such as percent silt
and clay). Soil hydrologic group A is described as ‘‘deep,
well drained to excessively drained sands or gravels’’; group
A/D indicates soils that have a ‘‘very slow rate of water
transmission’’ in their natural condition but that behave
as group A soils when artificially drained (US Department
of Agriculture, 2001).

Correlations generally are strongest for RUZC, with
p 6 0.001 for all variables shown in Table 2. The maximum
positive correlation by this method is 0.443. The maximum
correlation overall (�0.554) was obtained with RSZC.
Although correlations with RSZC generally are weaker, more
than half of these have significance level <0.01. Weaker cor-
relations with recharge estimates by this method may re-
flect preferential flow. Estimates of RPTF yield the weakest
correlations with spatial data (Table 2). Only two variables
approached the 0.05 significance level: base flow (p = 0.050)
and shrink–swell potential (p = 0.054).

Factors influencing recharge in the study area

The remainder of the paper focuses on RSZC, which is signif-
icantly correlated with several potential explanatory vari-
ables in Table 2, has intermediate variability (IQR = 16.1),
and performed better than RUZC and RPTF in subsequent
empirical models. Results of ANOVA and Tukey’s test on
ranked data indicate that NAWQA study areas containing
coarse-grained or fractured aquifers or with high sand con-
tent (those marked ‘‘A’’ or ‘‘AB’’ in Fig. 3) – with the
exception of CONN – have significantly greater recharge
than their westernmost counterparts (those marked ‘‘BC’’
or ‘‘C’’, such as CNBR and TRIN). In the figure, study areas
with the same letter are not significantly different at the
0.05 level. Some of the study areas marked ‘‘A’’ and AB’’
contain sand and gravel aquifers (PODL and GAFL coastal
plain surficial aquifers), fractured crystalline rocks (PODL
Piedmont and Blue Ridge), or carbonate rocks with karst
features (Floridan aquifer in GAFL), which are highly trans-
missive. This makes sense, because the same hydrogeologic
characteristics that lead to high transmissivities in the sat-
urated zone also promote high recharge rates through the
unsaturated zone.

Estimates of RSZC in WMIC apparently reflect the high
sand content (median = 87.6%) of coarse-grained glacial
deposits, although it is hard to generalize because only four
estimates were obtained. WHMI is in glacial deposits com-
prising fine-grained sediment (median silt content = 70.4%),
but recharge in the area is enhanced by the presence of
numerous tile drains that convey excess water from agricul-
tural fields and thus lower the water table. In the absence of
drains, the water table would rise to land surface and could
reject additional recharge. We anticipated that CONN sites
(median sand content = 86.9%) would have greater median
recharge than shown in Fig. 3; these estimates may show ef-
fects from road salt, which was assumed negligible com-
pared with fertilizer inputs of chloride. The remaining
study areas (TRIN and CNBR) contain fine-grained sediments
(median silt content = 55% and 78%) and have comparatively
low recharge (Table 1).

Using the NLR model and subsequent sensitivity analysis,
we identified factors that most influence the RSZC estimates.
The model explains a moderate amount of variation in the
data set, based on the coefficient of determination (R2) of
0.61, and the standard error of regression is 0.942 ln(cm/
yr). A plot of predicted versus observed or ‘‘measured’’ re-
charge (RSZC) indicates that the overall model fit is reason-
able (Fig. 4a). A probability plot indicates that the
residuals are normally distributed, which satisfies regression
assumptions regarding hypothesis testing for significance of
model coefficients (Fig. 4b).

The model comprises water input and transport factors
that promote or inhibit transfer of water through the unsat-
urated zone to the water table. Ten of these are significant
at the 0.05 level, and the significance of TWI and precipita-
tion approaches 0.05 (Table 3). This differs from the MLR
model attempted for southern New Jersey, for which only
measured percent clay (p = 0.045) was significant at the
0.05 level (Nolan et al., 2003). The regional scope of the
current study facilitates systematic variation in climate
and landscape variables, which promotes correlations with
recharge. In particular, regional climate patterns and flow
processes drive the observed correlations, which are
exploited by the NLR model. The NLR model differs from
an earlier empirical approach that modeled recharge glob-
ally (Doll et al., 2002). They assigned values by expert judg-
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Figure 4 (a) Observed recharge versus that predicted by the nonlinear regression model. Observed recharge refers to estimates by
saturated-zone chloride tracer (RSZC). (b) Quantile plot of model residuals. Natural logarithms of model residuals are shown.

Factors influencing ground-water recharge in the eastern United States 195
ment for factors representing the fraction of total runoff of
land areas delivered as recharge, and checked results in
iterative fashion. In contrast, NLR transport factors are
weighted automatically by model coefficients during
calibration.

Factors are shown in Table 3 in decreasing order of influ-
ence for components Ii and Ti of the NLR model. Irrigation
variables are insignificant in these regressions, so Eq. (4) re-
duces to a single water-input variable (precipitation). Rela-
tive sensitivity values indicate that, overall, mean annual
runoff (RS = 1.1), air temperature (RS = 0.80), and precipita-
tion (RS = 0.68), and TWI (RS = 0.63) most influence re-
charge at sampled sites in the region. For example,
recharge predicted by Eq. (3) increases by 0.68% for a 1% in-
crease in mean annual precipitation. The comparatively
large influence of the precipitation variable and positive
coefficient sign are consistent with prior regression models.
Annual precipitation was the most important variable in a
MLR model that also included maximum soil-water storage,
shallow depth to water table, and spring rainfall rate as



Table 3 Parameters of nonlinear regression model for ground-water recharge

Model parameter Unitsa Estimated coefficientb Significance level (p) Relative sensitivityc

Intercept ln(cm/yr) 0.437 0.174 na

Water input (b)
Mean annual precipitation cm/yr 21.4 0.0838 0.68

Water transport factor (a)
Mean annual runoff cm/yr �1.71 0.0007 1.1
Mean annual temperature �C �1.25 0.0002 0.80
Topographic wetness index ln(m) �0.969 0.0547 0.63
Hortonian overland flow % �0.827 0.0032 0.54
Inceptisols % 0.438 0.0053 0.30
Hydric soils % 0.426 0.0059 0.30
Measured sand above water table % 0.398 0.0081 0.28
Subsurface flow contact time days 0.308 0.0019 0.21
Ultisols % 0.147 0.0007 0.10
Residential land used % �0.147 0.0411 0.10
Soil hydrologic group A % 0.114 0.0165 0.08
Wetlandse % �0.0674 0.150 0.05

na: Not applicable; b and a correspond to parameter coefficients in Eqs. (4) and (5), respectively.
a Original units before normalization of independent variables.
b After normalization; all units of independent variables are dimensionless after dividing by their mean values. Coefficients within the

exponential component of the model (a) are directly comparable.
c Absolute value of percent change in predicted recharge in units of ln(cm/yr), for 1% change in an independent variable.
d NLCDe 92 categories 25 (residential without forest) and 26 (residential with forest).
e NLCDe 92 categories 91 (woody wetlands) and 92 (emergent herbaceous wetlands).
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explanatory variables (Sophocleous, 1992). Prior research-
ers observed high correlations between recharge and sea-
sonal precipitation for hydrogeological provinces in India
(Rangarajan and Athavale, 2000). Seasonal precipitation
amounts were strongly related to recharge in glaciated sed-
iments of north-central Minnesota (Nichols and Verry,
2001). Based on these earlier results, seasonal variables rep-
resenting spring (March–May), summer (June–August), fall
(September–November), and winter (December–February)
precipitation were tested with the NLR model, but were sta-
tistically insignificant.

Transport factors proportionally increase or decrease
water inputs, as indicated by the sign of the model coeffi-
cient, in nonlinear fashion. For example, mean annual tem-
perature has a negative coefficient sign, indicating that as
temperature increases, recharge decreases, likely because
of increased potential for evapotranspiration. Temperature
generally increases from north to south in the region; TRIN
and GAFL have the warmest mean annual temperature
among sampled study areas.

Some model coefficients have a different sign than ob-
tained with univariate correlations. The univariate correla-
tion coefficient for mean annual runoff is positive (Table 2),
but this factor has a negative coefficient sign in the NLR
model (Table 3). The positive sign in the univariate case is
reasonable because runoff by this method (Gebert et al.,
1987) is calculated as stream flow divided by basin area.
Base flow is a component of stream flow. The base-flow in-
dex (used to compute base flow) is assumed to represent,
over the long term, the percentage of natural ground-water
discharge to streams (Wolock, 2003b). Long-term discharge
should resemble long-term average natural ground-water
recharge. In the multi-variate NLR model, however, runoff
appears to explain residual variation in recharge that is
not accounted for by other variables in the model. Factors
such as precipitation and sandy, well-drained soils represent
infiltration and are positively related to recharge as well.
Therefore in the multi-variate case, runoff appears more re-
lated to overland water movement to streams, which is ex-
pected to have a negative relation with recharge. The
negative sign for Hortonian overland flow (RS = 0.54) pro-
vides additional evidence of such a relation.

Similarly, subsurface contact time (positive coefficient
sign, RS = 0.21) may explain residual variation in the NLR
model, given that TWI is also in the model. Topographic
wetness index (negative sign, RS = 0.63) is a terrain metric
that depends on drainage area and slope and indicates the
potential for ground-water exfiltration. Thus, high values
of TWI represent ground-water discharge areas, and would
be expected to be inversely related to recharge. Subsurface
contact time is positively related to TWI and negatively re-
lated to the lateral hydraulic conductivity of the aquifer
(Vitvar et al., 2002). Because both contact time and TWI
are in the model, the former may reflect lateral residence
time, with greater times associated with more opportunity
for vertical movement of infiltrating water.

Soil characteristics, sediment texture, and land use have
small RS values (0.30 or less) and, therefore, less influence
on the recharge estimates. Some of these factors likely rep-
resent combined effects of sediment texture and climate on
recharge. Hydric soils (positive sign, RS = 0.30) represent
saturated, flooded, or ponding conditions and commonly
are anaerobic near the surface. Ultisols (RS = 0.10) are
highly weathered soils that contain oxidized iron and alumi-
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num, and have positive coefficient sign in the model (Table
3). They are found in moist areas with considerable precip-
itation and likely represent leaching conditions indicative of
recharge. Sampled areas with high percentages of hydric
soils are in TRIN and GAFL, and those with high percentages
of Ultisols are primarily in the southeast (PODL and GAFL).

Other factors, such as measured sand (positive sign,
RS = 0.28) above the water table and soil hydrologic group
A (positive sign, RS = 0.08), indicate primarily a textural ef-
fect. These results corroborate an earlier model that pre-
dicts that higher recharge when soils in the upper 30 cm
of the profile are coarse-textured (Doll et al., 2002). Great-
er recharge is expected in areas with coarse-textured soils,
which promote rapid infiltration of water.

Land-use factors may represent effects of humans or nat-
ural conditions on recharge. Residential land use (negative
slope coefficient, RS = 0.10) comprises NLCDe 92 categories
25 (NLCD nonforested/LULC residential) and 26 (NLCD for-
ested/LULC residential), and might indicate areas with rel-
atively impervious surfaces from housing, roads, and other
suburban development. High percentages of this combined
residential land use are present sporadically throughout
the region, particularly in TRIN and CONN. Wetlands (nega-
tive slope coefficient, RS = 0.05) is the least important var-
iable in the model but is retained because it is reasonable
from a conceptual standpoint. It likely indicates ground-
water exfiltration areas, where the water table intersects
the land surface.
Conclusions

Estimates of ground-water recharge were obtained for se-
lected locations in the eastern US by Darcian and chloride-
tracer methods. Recharge estimates by chloride tracer are
significantly correlated with factors representing climate,
hydrology, land use, and soil properties. We emphasized
the ground-water chloride tracer (RSZC) estimates in this re-
search because they had intermediate variability and per-
formed best in the nonlinear regression model. Although
the RSZC methods produced the best results in this study,
that may not always be the case. Use of multiple methods
is beneficial, because each method has advantages and dis-
advantages. Explanatory variables that commonly vary over
large distances (e.g., mean annual temperature and precip-
itation) likely led to the improved regression results for the
RSZC method, which provides recharge estimates that are
integrated over much larger areas than the RUZC and RPTF
methods.

We evaluated RSZC using analysis of variance, multiple
comparison tests, and an exploratory nonlinear regression
(NLR) model. For the most part, recharge was significantly
higher in areas with well-drained soils or those comprising
coastal plain surficial aquifers, fractured crystalline rocks,
and carbonate rocks. Westernmost portions of the study
area have high silt content and comparatively low recharge.

The NLR model comprises precipitation and transport
factors and identifies those, in a multi-variate context, that
most influence recharge in the region. Sensitivity analysis
indicated that, of the more than 100 variables screened in
the model, mean annual runoff, air temperature, precipita-
tion, and topographic wetness index had the most influence
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Table A2 Recharge estimates (cm/yr) by the Darcian-pedotransfer, unsaturated-zone chloride tracer, and saturated-zone
chloride tracer methods

NAWQA
study unit

Station identifier Sample
identifier

Darcian-pedotransfer
method (RPTF)

Chloride tracer in
unsaturated zone (RUZC)

Chloride tracer in
saturated zone (RSZC)

CNBR 411733096185501 DG-23 – – 1.5
CNBR 413302097090530 K-7 47.2 3.6 10.2
CNBR 413348096324801 FP3 0.0 11.0 4.8
CNBR 413853096483801 D-22 1.9 0.4 0.7
CNBR 413919096531401 DO-12 3.8 4.9 –
CNBR 414141096371701 D-26 0.0 4.0 4.8
CNBR 414343096595801 CO-13 57.2 2.0 5.8
CNBR 414401096531301 D-21 2.0 1.5 2.1
CNBR 414527097094101 S-11 393.2 11.3 14.8
CNBR 414948097212601 S-01 0.0 0.3 0.6
CNBR 415458097142201 S-R2 512.2 8.5 15.8
CNBR 415558096434501 CU-20 32.1 3.2 11.8
CNBR 415918096350501 CU-29 0.4 6.4 23.9
CNBR 420024096485901 CU-19 0.4 7.7 9.1
CNBR 420248096300901 CU-30 21.8 4.6 7.8
CNBR 420425097101301 S-10 0.0 2.4 6.9
CNBR 420526096543901 W-14 17.7 1.4 2.8
CNBR 421149097121301 W-09 4.2 2.4 5.6
CNBR 421303097011601 W-15 1.5 3.3 5.9
CNBR 421357097243201 P-02 0.0 3.1 1.4
CNBR 421445097123801 W-RI 0.1 1.4 5.0
CNBR 421829097112401 W-08 1.6 2.2 32.5
CNBR 422156097314301 P-03 13.9 1.3 1.7
CNBR 422441097404601 P-04 1.1 2.0 4.6
CNBR 422756097334901 K-05 1.3 1.9 1.6
CNBR 422802097031601 CE-17 – 0.7 0.9
CNBR 422947097142701 CE-06 0.0 2.6 12.9
CONN 413122073122401 CONNCL2 – 5.7 5.6
CONN 413126073121101 CONNCL4 13.5 22.4 18.0
CONN 413127073122401 CONNCL3 – 8.0 7.3
CONN 413128073120000 CONNCL5 0.0 0.7 10.2
CONN 413129073122001 CONNCL1 0.0 82.4 4.3
CONN 413130073115801 CONNBR1 537.7 17.1 15.6
CONN 413130073120401 CONNSW2 – 24.2 21.3
CONN 413137073120000 CONNSW4 1026.5 12.0 9.2
CONN 413138073121201 CONNSW1 – 6.4 5.3
CONN 413144073115701 CONNSW3 – 16.3 4.2
CONN 413925072544401 CONNRB – 1.6 19.5
CONN 414332072555401 CONNSB – 33.9 18.3
CONN 414815072335701 CONNWM – 8.3 2.8
CONN 414826072290901 CONNMP – 10.4 154.5
CONN 414917072403501 CONNWC – 6.1 61.8
CONN 415035072293801 CONNVR – 6.1 32.1
CONN 415101072314901 CONNMRS – 4.1 2.7
CONN 415107072333101 CONNOC 4.1 5.2 –
CONN 415148072325601 CONNNS – 3.7 4.5
CONN 415336072414801 CONNBW – 57.7 12.4
CONN 415446072364501 CONNEI – 11.0 7.0
CONN 415453072482901 CONNMS – 39.1 10.5
CONN 415535072475701 CONNKG – 5.8 5.8
CONN 420027072262001 CONNBS – 5.9 0.8
CONN 420339072411701 CONNPD – 1.6 33.7
CONN 420400072370201 CONNFH 158.8 5.5 4.4
CONN 420550072434601 CONNWM 0.7 6.1 9.2
CONN 420757072390101 CONNNW – 9.3 22.9
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Table A2 (continued)

NAWQA
study unit

Station identifier Sample
identifier

Darcian-pedotransfer
method (RPTF)

Chloride tracer in
unsaturated zone (RUZC)

Chloride tracer in
saturated zone (RSZC)

CONN 421031072311601 CONNSV 0.0 2.2 3.0
CONN 421118072410401 CONNHG 20.2 18.9 12.0
CONN 421137072385801 CONNHC – 1.3 –
CONN 421216072411501 CONNBL 0.0 0.7 –
GAFL 280241082224403 FL-4403 11.5 4.4 8.4
GAFL 280247082231901 FL-31901 23.7 14.6 19.6
GAFL 280249082220703 FL-20703 – 124.1 9.2
GAFL 280253082223803 FL-803 57.1 84.1 34.3
GAFL 280301082222702 FL-2702 21.1 43.7 19.4
GAFL 280846082134402 HILLS – 9.4 –
PODL 383653077203701 PODL87 0.2 4.1 49.8
PODL 384956077250301 PODL3849 12.9 0.6 30.6
PODL 385305077162101 PODL46 0.6 3.7 14.2
PODL 385311077215001 PODL47 23.9 2.1 20.0
PODL 385930077215901 PODL35 361.2 1.1 2.4
PODL 390533077125201 PODL28 390.0 1.9 2.1
PODL 390812077051001 PODL15 57.8 2.3 0.8
PODL 390906077145601 PODL16 19.4 – –
PODL 391102077101901 PODL05 1.0 16.1 88.2
PODL 391657076003601 TRI-1 – – –
PODL 391659076001800 FS1-1 – 23.2 33.7
PODL 391659076001801 PODLFS1-1 107.6 – –
PODL 391700076002501 FS1-2 3.1 – 34.6
PODL 391701076003201 FS1-3 93.3 5.6 172.7
PODL 391710075584001 AS1 – – 82.4
TRIN 294405095412301 Ref 1 – 0.3 1.5
TRIN 294503095373201 MW29 – – 3.5
TRIN 294620095440501 MW17 – – 1.0
TRIN 294657095412701 MW30 60.7 – –
TRIN 294800095415801 MW28A 1.3 – 0.7
TRIN 294801095425701 MW28 – 0.5 –
TRIN 294807095452701 MW27 – 1.5 1.1
TRIN 294919095320501 MW25 – 6.5 4.7
TRIN 294957095310801 MW26 1.8 1.5 5.0
TRIN 295049095253101 MW23 3.3 0.1 2.4
TRIN 295150095302401 MW20 – 3.1 3.7
TRIN 295232095294101 MW21 – 36.5 8.1
TRIN 295249095411301 MW16 3.5 – 2.6
TRIN 295358095374101 MW18 2.5 0.4 1.7
TRIN 295421095305801 MW19 0.9 4.8 4.7
TRIN 295557095360901 MW11 1.9 0.2 1.6
TRIN 295633095335201 MW12 – 0.3 0.8
TRIN 295711095222301 MW07 18.3 8.7 5.0
TRIN 295714095361701 MW09 3.0 0.1 –
TRIN 295720095290001 MW08 – 3.0 4.1
TRIN 300011095251801 MW10 – 0.8 10.5
TRIN 300026095225401 MW06 – 2.7 2.5
TRIN 300044095312001 MW01 – 0.1 1.0
TRIN 300155095200201 MW05 0.0 0.1 1.5
TRIN 300351095232601 MW02 – 0.5 0.6
TRIN 300825095274801 MW14 12.2 0.6 0.1
TRIN 301008095302901 MW13 – 142.8 0.6
TRIN 301220095305501 MW15 7.3 1.3 1.1
TRIN 301716095400501 Ref03 0.1 4.7 5.4
WHMI 393230085375302 TP-2 1.9 11.7 26.0
WHMI 395025085493501 Uuk – 34.7 6.2

(continued on next page)

Factors influencing ground-water recharge in the eastern United States 203



Table A2 (continued)

NAWQA
study unit

Station identifier Sample
identifier

Darcian-pedotransfer
method (RPTF)

Chloride tracer in
unsaturated zone (RUZC)

Chloride tracer in
saturated zone (RSZC)

WHMI 395045085510933 svz 1143.6 – –
WHMI 395151085504501 2D 15.2 20.0 40.7
WHMI 395159086171501 WHMI 12.1 0.4 0.3
WHMI 400717085032801 TP-10 7.7 13.6 9.8
WHMI 400836085205901 TP-9 12.9 13.6 40.6
WMIC 443317089211701 wmicfss4 0.7 3.5 290.0
WMIC 443320089212301 wmicfss3 51.9 15.5 43.0
WMIC 443328089213601 wmicfss2 47.5 6.2 40.6
WMIC 443338089221501 wmicfss1 12.6 37.0 45.0

Study unit definitions are: CNBR, Central Nebraska Basins; CONN, Connecticut, Housatonic, and Thames River Basins; GAFL, Georgia–
Florida Coastal Plain; PODL, Potomac–Delmarva River Basins; TRIN, Trinity River Basin; WMIC, Western Lake Michigan Drainages; WHMI,
White-Miami River Basins.
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on predictions. Some of the variables, such as runoff and
subsurface contact time, are difficult to interpret and may
explain residual variation not accounted for by other vari-
ables in the model; however, their inclusion results in signif-
icant model improvement. Soil characteristics such as
measured percent sand have less influence on predicted re-
charge but nonetheless are highly significant in the model (p
generally <0.01). Additionally, measured bulk physical prop-
erties (texture, moisture content, and bulk density) were
key to estimating recharge by the Darcian-pedotransfer
method.

Although the NLR model fits the existing data set reason-
ablywell, we consider it exploratory and refrained fromusing
it to predict recharge throughout the region. Sampling was
sparse overall, with only 108 estimates of RSZC available for
the eastern US. Future work could involve hundreds or even
thousands of RSZC estimates using ground water and atmo-
spheric chemistry data that are readily available in national
databases. An enhanced data set may improve model fit, re-
duce variability, and enable prediction in unsampled areas.
Appendix 1.

See Tables A1 and A2.
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