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Biomechanics of pollen-flinging 
 
Briggs’s (1954-1958) analysis was the first attempt to apply rigorous physical theory to 
the pollen-flinging mechanism of the Kalmia flower. More recently, Niklas (1992) has 
given a physical description of the flinging biomechanics of a related species, Kalmia 
angustifolia. Here we present some of the physical reasoning and calculations apparent 
from the materials Briggs left behind, with updated interpretations made possible with 
recent knowledge of the filament geometry and the properties of related botanical 
materials 

The bending of the filament of the Kalmia flower is an inherently two-dimensional 
problem involving curvature and transverse forces.  Desirable simplifications result from 
transforming it into a largely one-dimensional problem of simple lengths and 
displacements. Briggs and Frankland did this by the standard method of extreme-fiber 
analysis. The filament is conceptualized as a tight bundle of infinitesimally thin 
hypothetical fibers. Here the word “fiber” refers to a hypothetical geometric element, and 
does not correspond to any physical botanical structure. Each fiber experiences a 
particular longitudinal stress and strain caused by the bending stress. Fibers at the edges 
that experience the greatest stress are called the extreme fibers; in the Kalmia filament 
these are at the extreme ad- and abaxial positions. Briggs’ measured dimensions indicate 
extreme fiber strain of 4.7% for a filament bending through 270° as in figure 4.  

Frankland calculated extreme fiber stress using the flexure equation, which defines 
bending stress as  
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where M is the bending moment (the product of length and applied force of the filament, 
considered as a cantilever beam loaded at its distal end). Briggs’s measurements give a 
bending moment of 2.0 μNm; A is the area of the beam’s cross-section. The coordinate x 
is in the longitudinal direction of the beam, and the y-z plane is normal to it (figure 6). 
The coordinate y is in the direction of the bending force and has its origin on the neutral 
axis, defined as the set of points in the y-z plane at which the bending stress σx(y) is zero. 
Conceptually the neutral axis is the line that stays fixed when the beam is bent, around 
which the off-axis portions of the beam tend to rotate. The integral in the denominator is 
frequently called the moment of inertia, though because it includes no inertial mass, it is 
less confusingly called the second moment of the cross-sectional area.  
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With limited knowledge of its actual physical characteristics, Frankland 
conceptualized the filament as tube of circular cross section filled with fluid (in some 
instances referred to a gas). He assumed the material was homogeneous, so the neutral 
axis was simply a diameter. Given an outside radius R, the extreme fiber stress is σx(R). 
He calculated stress for various tube wall thicknesses. An actual filament internally 
comprises cells and intercellular spaces without a singular chamber resembling the 
interior of a tube, and it does not contain significant gas. Thus, the most relevant of 
Frankland’s calculations is the one having tube wall thickness equal to the tube radius, 
i.e. a rod rather than a tube. The area of integration A being a circle, with Briggs’ data and 
Frankland’s assumed geometry, the calculated extreme fiber stress is 0.12 MPa.  

Frankland, though he appropriately used the mid-filament thickness 250 µm when he 
was calculating extreme fiber strain, took the diameter of the circular cross section he 
used for calculating extreme fiber stress to be the basal lateral thickness of the filament, 
560 µm. This unrealistically large size is apparent in figure 6. The distribution of stress 
from a given bending moment over a larger area makes any given fiber stress less; this 
large area in the integral in (1) leads to Frankland’s value of extreme fiber stress. The 
small value he obtained was unrealistic for a beam whose own unaugmented stress could 
accomplish the Kalmia’s flinging of pollen and thus contributed unwarranted support for 
the argued necessity of negative pressure contributing a major component of the stress. 

Unlike the circular geometry, whose symmetry locates the neutral axis exactly on a 
diameter, the more realistic geometry requires a calculation of its position. For this, we 
assume homogeneity of the filament material, which is not strictly true (from figure 5 it is 
clear that the cross section contains different materials, cell sizes, and structures) but may 
be adequate for evaluating the reasonableness of computed values. Assuming also that 
the bending is entirely in the elastic range (Hooke’s law applies throughout), stress and 
strain in the bent filament increase linearly with y, whose zero is on the neutral axis. For 
the static case, appropriate to the pinned filament, compressive stress over the area above 
the neutral axis must balance the tensile stress over the area below. This condition 
determines the location of the neutral axis (n.a.): 

(2)    
∫∫

−−−−

−=
.... anbelowAreaanaboveArea

ydAydA
   

In words, the first moment of area must balance across the neutral axis.  
Integration over the indicated polygonal shapes with the measured dimensions gives 

the neutral axis position as 74 µm from the abaxial edge. Integrating with the second 
moment of area in the flexure formula (1) gives the bending stress σx(y). Using Briggs’ 
measured bending moment M, the abaxial (y = c) extreme fiber stress is 1.45 MPa. 
Recalculating the extreme fiber strain (again for the filament going through the 270° bend 
shown in figure 4), using our estimates of the filament dimensions we obtain a value of 
0.036, smaller than Frankland’s 0.047 because of the smaller filament thickness. The 
ratio of stress to strain then indicates a Young’s modulus of 40 MPa, larger by a factor 16 
than what Briggs and Frankland’s analysis would have given (Table I). This larger value 
indicates greater ability of the filament to apply force from unbending, and so diminishes 
the need for Briggs’ hypothesized augmentation of the force with negative pressure.  
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The second area where new knowledge can enhance Briggs’s interpretation is in the 
properties of relevant materials. Elastic limits of botanical materials are rarely measured 
outside of construction applications; most such measurements are for wood used as a 
construction material. In Table I we have compiled measured and computed values of 
such properties for the Kalmia filament and other materials selected for comparison. 
Young’s modulus is the one property known for all items here.  
 
TABLE I. Elastic properties of selected materials of botanical origin.  
Material Extreme 

Fiber 
Strain 

Extreme 
Fiber 
Stress 
(MPa) 

Young's 
Modulus 
(MPa) 

Strain 
at 
Elastic 
Limit 

Stress at 
Elastic 
Limit 
(MPa) 

K. latifolia filament--
Briggs/Frankland values (Briggs, 
1954-1958) 

0.047 0.12 2.5    

K. latifolia filament--our values  0.036 1.45 40   
Pine wood (Marks, 1930)   8030 0.00314 25 
Riparian stems and branches 
(Sutili and others, 2012) 

  4540 0.015 45 

Parenchyma (Niklas, 1992)   50   
Lignin (Cousins and others, 1975)   3300 0.067 220 
Cellulose  (Niklas, 1992)   400000   
Parenchyma of Pachycereus 
pringlei (Niklas and others, 1999) 

  4.6 to 9.6    

Stem rib tissue of Pachycereus 
pringlei (Niklas and others, 1999) 

  1900 to 2800   

 
The measurements of Sutili and others (2012) for stems and branches of four species 

of riparian plants are more appropriate for comparison than the wood (lumber) data 
available to Briggs. The motivation for these measurements was not to assess suitability 
for construction but rather to understand the performance of streambank vegetation in 
altering flow patterns within the river and reducing erosion. The stems and branches 
measured are relatively young and thin, so perhaps more similar to a Kalmia filament. 
Compared to wood used for construction, these have a smaller Young’s modulus, greater 
capacity for stress in the elastic range, and much greater strain at elastic limit (1.1% to 
1.5%). On the whole these properties suggest much closer resemblance to a Kalmia 
filament.  
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