[U. S. Geological Survey]

Chapter 19

Erosion, Weathering, and Sedimentation

Paul R. Bierman, Achim Albrecht, Michael H. Bothner, Erik T. Brown, Thomas D. Bullen,
Leda Beth Gray and Laurent Turpin

Isotope Tracers in Catchment Hydrology (1998), C. Kendall and J. J. McDonnell (Eds.)
Elsevier Science B.V., Amsterdam, pp. 647-678.


Ahnert, F., 1970. Functional relationships between denudation, relief, and uplift in large mid-latitude drainage basins. Am. J. Sci., 268: 243-263.

Albrecht, A., 1995. Radiocesium and 210Pb in sediments, soils and surface waters of a high alpine catchment: A mass balance approach relevant to radionuclide migration and storage. Aquatic Sciences.

Albrecht, A., Luck, A. and Weidmann, Y., 1996. Natural and anthropogenic radioactivity in sediments, soils and surface waters of a high alpine catchment: A mass balance approach to radionuclide migration and storage. Applied Geochemistry.

Andersson, P.S., Wasserburg, G.J., Ingri, J. and Stordal, M.C., 1994. Strontium, dissolved and particulate loads in fresh and brackish waters: the Baltic Sea and Mississippi delta. Earth and Planet. Sci. Lett., 124: 195-210.

Appleby, P.G. and Oldfield, F., 1992. Application of 210Pb to sedimentation studies. In: M. Ivanovich and R.S. Harmon (Eds), Uranium-series disequilibrium, Applications to Earth, Marine and Environmental Sciences, Second Addition. Oxford Science Publishers, Clarendon Presss, Oxford, p. 731-778.

Bailey, S.W., Hornbeck, J.W., Driscoll, C.T. and Gaudette, H.E., 1996. Calcium inputs and transport in a base- poor forest ecosystem as interpreted by Sr isotopes. Water Resour. Res., 32: 707-719.

Barnett, P.R.O., Watson J. and Connelly, D., 1984. A multiple corer for taking virtually undisturbed samples from shelf, bathyal and abyssal sediments. Oceanol. Acta, 7: 399-408.

Baskaran, M. And Iliffe, T.M., 1993. Age determination of recent cave deposits using excess 210Pb-a new technique. Geophys. Res. Lett., 20: 603-606.

Benninger, L.K., 1978. 210Pb balance in Long Island Sound. Geochim. et Cosmochim. Acta, 42: 1165-1174.

Bierman, P. and Turner, J., 1995. 10Be and 26Al evidence for exceptionally low rates of Australian bedrock erosion and the likely existence of pre-Pleistocene landscapes. Quaternary Res., 44: 378-382.

Bierman, P., 1993. Cosmogenic isotopes and the evolution of granitic landforms. Unpublished Doctoral Thesis, University of Washington.

Bierman, P.R. and Gillespie, A.R., in revision. Basin-Scale Rates of Erosion Estimated Using 10Be and 26Al in Sediments. Geology.

Bierman, P.R., 1994. Using in situ produced cosmogenic isotopes to estimate rates of landscape: A review from the geomorphic perspective, Jour. of Geophysical Res., 99: 13885-13896.

Bierman, P., Gillespie, A., Caffee, M. and Elmore, D., 1995. Estimating erosion rates and exposure ages with 36Cl produced by neutron activation. Geochim. et Cosmochim. Acta, 59: 3779-3798.

Bierman, P.R. and Steig, E., 1992. Using cosmogenic isotopes to measure basin-scale rates of erosion. Geological Society of America Abstracts with Programs, 24(7): A122.

Bierman, P.R. and Steig, E., 1996. Estimating rates of denudation using cosmogenic isotope abundances in sediment. Earth Surface Processes and Landforms, 21(2): 125-139.

Bishop, P., 1985. Southeast Australian late Mesozoic and Cenozoic denudation rates: a test for late Tertiary increases in continental denudation. Geology, 13: 479-482.

Blum, J.D. and Erel, Y., 1995. A silicate weathering mechanism linking increases in marine 87Sr/86Sr with global glaciation. Nature, 373: 415-418.

Blum, J.D., Erel, Y. and Brown, K., 1993. 87Sr/86Sr ratios of Sierra Nevada stream waters - Implications for relative mineral weathering rates. Geochim. et Cosmochim. Acta., 57: 5019-5026.

Brass, G.W., 1976. The variation of the marine 87Sr/86Sr ratio during Phanerozoic time: interpretation using a flux model, Geochim. et Cosmochim. Acta, 40: 721-730.

Brittain, J.E., Bjørnstad, H.E., Salbu, B. and Oughton, D.H., 1992. Winter transport of Chernobyl radionuclides from a montane catchment to an ice-covered lake. Analyst, 117: 515-519.

Brown, E.T., Bourlès, D.L., Colin, F., Sanfo, Z., Raisbeck, G.M. and Yiou, F., 1994. The development of iron crust lateritic systems in Burkina Faso, West Africa examined with in situ-produced cosmogenic nuclides. Earth Planet. Sci. Lett., 124: 19-33.

Brown, E.T., Stallard, R.F., Larsen, M.C., Raisbeck, G.M. and Yiou, F., 1995. Denudation rates determined from the accumulation of in situ produced 10Be in the Luquillo Experimental Forest, Puerto Rico. Earth Planet. Sci. Lett., 129: 193-202.

Brown, E.T., Brook, E.J., Raisbeck, G.M., Yiou, F. and Kurz, M.D., 1992. Effective attenuation of cosmic rays producing 10Be and 26Al in Quartz: Implications for exposure dating. Geophys. Res. Lett., 19(4): 369-372.

Brown, L., Stensland, G.J., Klein J. and Middleton, R., 1989. Atmospheric deposition of 7Be and 10Be. Geochim. et Cosmochim. Acta, 53: 135-142.

Bruland, K., 1974. Pb-210 geochronology in the coastal marine environment. Ph.D. Thesis, Univ. of California, San Diego, California, 106 p.

Bullen, T.D., Krabbenhoft, D.P and Kendall, C., 1996. Kinetic and mineralogic controls on the evolution of groundwater chemistry and 87Sr/86Sr in a sandy silicate aquifer, northern Wisconsin, USA. Geochim. et Cosmochim. Acta, 60: 1807-1821.

Bullen, T.D., White, A.F., Blum, A.E., Harden, J.W. and Schulz, M.S., 1997. Chemical weathering of a soil chronosequence on granitoid alluvium. II. Mineralogic and isotopic constraints on the behavior of Sr. Geochim. et Cosmochim. Acta, 61: 291-306.

Cerling, T.E., and Craig, H., 1994. Geomorphology and in-situ cosmogenic isotopes, Ann. Rev. Earth Planet. Sci., 22: 273-317.

Clauer, N., 1979. Relationship between the isotopic composition of strontium in newly formed continental clay minerals and their source material. Chem. Geol., 27: 115-124.

Clauer, N., 1982. The rubidium-strontium method applied to sediments: certitudes and uncertainties. In: G.S. Odin (Ed), Numerical dating in stratigraphy. John Wiley and Sons, pp. 245-276.

Crusius, J.F. and Anderson, R.F., 1995. Evaluating the mobility 137Cs, 239+240Pu, and 210Pb from their distributions in laminated lake sediments. Jour. of Paleolimn., 13: 119-141.

Crusius, J.F., 1992. Evaluating the mobility of 137Cs, 239+240Pu, and 210Pb from their distributions in laminated sediments. Ph.D. Dissertation, Columbia University, 261 p.

Cutshall, N.H., Larsen, I.L. and Olson, C.R., 1983. Direct analysis of 210Pb in sediment samples; self-absorption correction. Nucl. Instr. Meth., 206: 309-312.

Davis, R. and Schaeffer, O.A., 1955. Chlorine-36 in nature. Annals of the New York Acad. of Sci., 62: 105-122.

Dominik, J., Burrus, D. and Vernet, J.-P., 1987. Transport of the environmental radionuclides in an alpine watershed. Earth and Planet. Sci. Lett., 84: 165-180.

Dominik, J., Mangini, A. and Mueller, G., 1981. Determination of recent deposition rates in Lake Constance with radioisotopic methods. Sedimentology, 28: 653-677.

Faure, G., 1977. Principles of isotope geology. John Wiley and Sons, New York, 589 p.

Flynn, W.W., 1968. Determination of low levels of polonium-210 in environmental materials. Analytical Chimica Acta, 43: 221-227.

Francois, L.M. and Walker, J.C.G, 1992. Modeling the Phanerozoic carbon cycle and climate: constraints from the 87Sr/86Sr ratio of sea water. Am. J. Sci., 292: 81-135.

Froelich, P.N., Blanc, V., Mortlock, R.A., Chillrud, S.N., Dunstan, W., Udomkit, A. and Peng, T.-H., 1992. River fluxes of dissolved silica to the ocean were higher during glacials: Ge/Si in diatoms, rivers, and ocean. Paleoceanography, 7: 739-767.

Garrels, R.M., and Mackenzie, F.T., 1971. Evolution of sedimentary rocks. W.W. Norton and Co., New York.

Gibbs, and Kump, L., 1994. Global chemical erosion during the last glacial maximum and the present: sensitivity to changes in lithology and hydrology. Paleoceanography, 9(4): 529-543.

Gilkes, R.J. and Suddhiprakarn, A., 1979. Biotite alteration in deeply weathered granite. I. morphological, mineralogical, and chemical properties. Clays Clay Minerals, 27: 349-360.

Goldberg, E.D., 1963. Geochronology with 210Pb. In: Radioactive Dating. IAEA, Vienna, pp. 121-122.

Gosz, J.R. and Moore, D.I., 1989. Strontium isotope studies of atmospheric inputs to forested watersheds in New Mexico. Biogeochem., 8: 115-134.

Granger, D.E. and Kirchner, J.W., 1994a. Erosional response to tectonic forcing inferred from cosmogenic isotopes in alluvial sediment. EOS, Transactions, American Geophysical Union, 75(44): 287.

Granger, D.E. and Kirchner, J.W., 1994b. Estimating catchment-wide denudation rates from cosmogenic isotope concentrations in alluvial sediment: Fort Sage Mountains, California. In: M.A. Lanphere, G.B. Dalrymple and B.D. Turrin (Eds), Abstracts of the Eighth International Conference on Geochronology, Cosmochronology, and Isotope Geology, U.S. Geological Survey Circular-1107, p. 116.

Graustein, W.C., 1989. 87Sr/86Sr ratios measure the sources and flow of strontium in systems. In: P.W. Rundel, J.R. Ehleringer and K.A. Nagy (Eds), Stable Isotopes in Ecological Research. Springer-Verlag, New York, pp. 91-511.

Harden, J.W., 1987. Soils developed in granitic alluvium near Merced, California. U.S. Geol. Surv. Bulletin 1590-A, 57 p.

Krishnaswami, S., Trivedi, J.R., Sarin, M.M., Ramesh, R., and Sharma, K.K., 1992. Strontium isotopes and rubidium in the Ganga-Brahmaputra river system: weathering in the Himalaya, fluxes to the Bay of Bengal and contributions to the evolution of oceanic 87Sr/86Sr. Earth and Planet. Sci. Lett., 109: 243-253.

Krishnaswami, S., Lal, D., Martin, J.M. and Meybeck, M., 1971. Geochronology of lake sediments. Earth and Planet. Sci. Lett., 11: 407-414.

Kuer, 1989. Bericht der eidg. Kommission zur Überwachung der Radioaktivität für die Jahre 1985-1986. Zuhänden des Bundesrates No. 311, 310.

Kurz, M.D., 1986. In situ production of terrestrial cosmogenic helium and some applications to geochronology. Geochim. et Cosmochim. Acta, 50: 2855-2862.

Lal, D., and Arnold, J.R., 1985. Tracing quartz through the environment, Proc. Indian Acad. Sci. (Earth Planet. Sci.), 94: 1-5.

Lal, D., 1991. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planet. Sci. Lett., 104: 424-439.

Lal, D., 1985. On the study of continental erosion rates and cycles using cosmogenic 10Be and 26Al and other isotopes. Dating Young Sediments, 285-298.

Larsen, M.C. and Torres-Sanchez, A.J., 1992. Landslides triggered by Hurricane Hugo in eastern Puerto Rico, September 1989. Caribbean Jour. of Sci., 28: 113-125.

Larsen, M.C., 1991. Mass wasting disturbance and denudation in a humid tropical montane forest, Puerto Rico. Geol. Soc. Am., Abst. with Prog., 23: A256.

Lasaga, A.C., Soler, J.M., Ganor, J. and Burch, T.E., 1994, Chemical weathering rate laws and global geochemical cycles. Geochim. et Cosmochim. Acta, 58: 2361-2386.

Li, Y.H. and Erni, P.E., 1974. Erosionsgeschwindigkeit im Einzugsgebiet des Rheins. Faktorenanalyse und chemische Massenbilanz. Vom Wasser, 43: 15-42.

Malmgren, L. and Jansson, M., 1995. The fate of Chernobyl radiocesium in the River Öre catchment, northern Sweden. Aquatic Sciences, 57: 144-160.

Marchand, D.E., 1971. Rates and modes of denudation, White Mountains, eastern California. Am. J. Sci., 270: 109-135.

McDowell, W.H. and Asbury, C.E., 1994. Export of carbon, nitrogen, and major ions from three tropical montane watersheds. Limnol. Oceanog., 39: 111-125.

McLennan, S.M., 1993. Weathering and global denudation. Jour. Geol., 101: 295-303.

Miller, E.K., Blum, J.D. and Friedland, A.J., 1993. Determination of soil exchangeable-cation loss and weathering rates using Sr isotopes. Nature, 362: 438- 441.

Monaghan, M.C., McKean, J., Dietrich, W. and Klein, J., 1992. 10Be chronology of bedrock-to-soil conversion rates. Earth and Planet. Sci. Lett., 111: 483-492.

Müller, G. and Förstner, U. 1968. Sediment transport in Mündungsgebiet des Alpenrheins. Geol. Rundsch., 58: 229-259.

Munhoven, G. and. Francois, L.M, 1994. Glacial-Interglacial changes in continental weathering: possible implications for atmospheric CO2. In: R. Zahn, T.F. Pedersen, M.A. Kaminski and L. Labeyrie (Eds.), Carbon cycling in the glacial ocean: constraints on the ocean's role in global change, 17. NATO ASI Series I, pp. 39-58.

Murray, A.S., Marten, R., Johnston, A. and Martin, P., 1987. Analysis for naturally occurring radionuclides at environmental concentrations by gamma spectrometry. Jour. Radio. Nucl. Chem., 115: 263-288.

Murray, A.S., Stanton, R., Olley, J.M. and Morton, R., 1993. Determining the origins and history of sedimentation in an underground river system using natural and fallout radionuclides. Jour. of Hydrol., 146: 341-359.

Negrel, P., Allegre, C.J., Dupre, B. and Lewin, E., 1993. Erosion sources determined by inversion of major and trace element ratios and strontium isotopic ratios in river water: the Congo basin case. Earth and Planet. Sci. Lett., 120: 59-76.

Nishiizumi, K., et al., 1991. Cosmic ray produced 10Be and 26Al in Antarctic rocks: exposure and erosion history. Earth and Planet. Sci. Lett., 104: 440-454.

Nishiizumi, K., Kohl, C.P., Arnold, J.R., Dorn, R., Klein, J., Fink, D., Middleton, R. and Lal, D., 1993. Role of in situ cosmogenic nuclides 10Be and 26Al in the study of diverse geomorphic processes. Earth Surf. Proc. Landforms, 18: 407-425.

Nittrouer, C.A., 1978. The process of detrital sediment accumulation in a continental shelf environment: an examination of the Washington shelf. Ph.D. Thesis, Univ. of Washington., Seattle, Wash., 243 p.

O'Sullivan, P.E., 1983, Annually-laminated lake sediments and the study of quaternary environmental changes - a review. Quaternary Sci. Rev., 1: 245-313.

Oberlander, T., 1972. Morphogenesis of granitic boulder slopes in the Mojave desert. Jour. Geol., 80: 1-20.

Olley, J.M., Murray, A.S., Mackenzie, D.H. and Edwards, K., 1993. Identifying sediment sources in a gullied catchment using natural and anthropogenic radioactivity. Water Resour. Res., 29: 1037-1043.

Olsen, C.R., Larsen, I.L., Cutshall, N.H., Todd, J.F., Wong, G.T.H. and Casey, W.H., 1985. Atomspheric fluxes and marsh-soil inventories of 7Be abd 210Pb. Jour. of Geophys. Res., 90: 10487-10495.

Ongley, E.D., Ralston, J.G. and Thomas, R.L., 1977. Sediment and nutrient loadings to Lake Ontario: methodological arguments. Can. Jour. of Earth Sci., 14: 1555-1565.

Palmer, M.R. and Edmond, J.M., 1989. The strontium isotope budget of the modern ocean. Earth and Planet. Sci. Lett., 92: 11-26.

Pamatmat, M.M., 1971. Oxygen consumption by the seabed IV: Shipboard and laboratory experiments. Limnology and Oceanography, 16(3): 536-550.

Pavich, M.J., 1989. Regolith residence time and the concept of surface age of the piedmont "peneplain". Geomorphology, 2: 181-196.

Pavich, M.J., Brown, L., Valette-Silver, J.N., Klein, J. and Middleton, R., 1985. 10Be analysis of a Quaternary weathering profile in the Virginia Piedmont. Geol., 13: 39-41.

Peters-Kümmerly, B., 1973. Untersuchungen über Zusammensetzung und Transport von Schwebstoffen in einigen Schweizer Flüssen. Geogr. Helv., 28: 137-151.

Reneau, S.L., Dietrich, W.M., Donahue, D.J. and Jull, A.J.T. 1989. Analysis of hillslope erosion rates using dated colluvial deposits. Jour. of Geol., 97: 45-63.

Ritchie, J.C., Spraberry, J.A. and McHenry, J.R., 1974. Estimating soil erosion from the redistribution of fallout 137Cs. Soil Sci. Am. Proc., 38: 137-139.

Ritchie, J.G. and McHenry, J.R., 1990, Application of radioactive fallout Cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: a review, Jour. Environ. Qual., 19: 215-233.

Robbins, J.A., 1978. Geochemical und geophysical applications of radioactive lead. In J.O. Nriagu (Ed), The Biogeochemistry of Lead in the environment. Elsevier, Amsterdam, pp. 285-393.

Santschi, P.H., Bollhalder, S., Camani, M., Farrenkothen, K., Görlich, W., Hasler, S., Heiz, H., Lueck, A., Schuler, C., Sturm, M., Völkle, H., Weber, C. and Zingg, S. 1986. Radionuklide des Tschernobyl Fallouts in natürlichen Gewässern: Auswasch-, Verdünnungs-, Eliminierungs- und Anreicherung-sprozesse. In: L. Ander, E.J. Born and G. Fischer (Eds), Radioaktivitäts messungen in der Schweiz nach Tschernobyl und ihre wissenschaftliche Interpretation Bern.

Santschi, P.H., Bollhalder, S., Farrenkothen, K., Lück, A., Zingg, S. and Sturm, M., 1988. Chernobyl Radionuclides in the Environment: Tracers for the Tight Coupling of Atmospheric, Terrestrial, and Aquatic Geochemical Processes. Environmental Sci. Tech., 22: 510-516.

Santschi, P. and Schindler, P.W., 1977. Chemical and geochemical studies of Lake Biel I. A mass balance for Lake Biel and its implications for the rates of erosion of the drainage area. Schweiz. Z. Hydrol., 39: 182-200.

Sarda, P., Staudacher, T., Allègre, C. and Lecomte, A., 1993. Cosmogenic neon and helium at Réunion: measurement of erosion rate. Earth Planet. Sci. Lett., 119: 405-417.

Saunders, I. and Young, A., 1983. Rates of surface processes on slopes, slope retreat, and denudation. Earth Surface Processes and Landforms, 8: 473-501.

Schuler, C., Wieland, E., Santschi, P.H., Sturm, M., Lueck, A., Bollhalder, S., Beer, J., Bonani, G., Hofmann, H.J., Suter, M. and Wölfli, W., 1991. A multitracer study of radionuclides in Lake Zürich, Switzerland. 1. Comparison of atmospheric and sedimentary fluxes of 7Be, 10Be, 210Pb, 210Po, and 137Cs. Jour. of Geophys. Res., 96(C9): 17051-17065.

Spooner, E.T.C., 1976. The strontium isotopic composition of sea water, and sea water-oceanic crust interaction, Earth and Planet. Sci. Lett., 31: 167-174.

Stallard, R.F. and Edmond, J.M., 1983. Geochemistry of the Amazon. 2. The influence of geology and weathering environment on the dissolved load. Jour. of Geophys. Res., 88: 9671-9688.

Stewart, A.D., 1993. The ratio of mechanical to chemical denudation in alluvial systems, derived from geochemical mass balance. Transactions of the Royal Society of Edinburgh: Earth Sciences, 84: 73-78.

Stihler, S.D., Stone, D.B. and Beget, J.E., 1992. "Varve" counting vs. tephrochronology and 137Cs and 210Pb dating: a comparative test at Skilak Lake, Alaska. Geol., 20: 1019-1022.

Stueber, A.M., Curtis, J.B.J., Pushkar, J. and Steele, J.D., 1975. Geochemistry of strontium in the Scioto River drainage basin, Ohio. Geological Society of America Bulletin, 86: 892-896.

Suchet, P. and Probst, J.L., 1993. Modeling of atmospheric CO2 consumption by chemical weathering of rocks: application to the Garonne, Congo and Amazon basins. Chem. Geol., 107: 205-210.

Summerfield, M., 1991. Global Geomorphology. Longman, New York, 537 p.

Thomas, R.B., 1983. Errors in estimating suspended sediment. In: R.M. Li and P.F. Lagasse (Eds), Proceedings of the D.B. Simons symposium on erosion and sedimentation, Fort Collins, CO. Simons, Li and Associates Inc.

Trimble, S.W., 1977. The fallacy of stream equilibrium in contemporary denudation studies. Am. J. Sci., 277: 876-887.

Turekian, K.K., Benninger, L.K. and Dion, E.P. 1983. 7Be and 210Pb total fluxes at New Haven, Connecticut and at Bermuda. Jour. of Geophys. Res., 88: 5411-5415.

Turekian, K.K., Nozaki, Y. and Benniger, L.K., 1977. Geochemistry of atmospheric radon and radon products. Annu. Rev. Earth Planet. Sci., 5: 227-255.

UNSCEAR, 1993. Sources and effects of ionizing radiation; Annex B, exposures from man-made sources of radiation. United Nations Scientific Committee on the effects of atomic radiation, U.N., New York.

Veizer, J., 1989. Strontium isotopes in sea water through time, Ann. Review Earth and Planet. Sci., 17: 141-167.

Waber, U., Kraehenbuechl, U. and Gunten, H.R., 1986. Radionuklide in Fluss und Grundwasser, Schwebstoffen und Algen im unteren Glatttal. In: L. Ander, E.J. Born, and G. Fischer (Eds), Radioaktivitätsmessungen in der Schweiz nach Tschernobyl und ihre wissenschaftliche. Intepretation, Bern, pp. 271-283.

Wallbrink, P.J. and Murray, A.S., 1993. Use of fallout radionuclides as indicators of erosion processes. Hydrological Processes, 7: 297-304.

White, A.F. and Blum, A.E., 1995. Effects of climate on chemical weathering in watersheds. Geochim. et Cosmochim. Acta, 59: 1729-1747.

White, A.F., Blum, A.E., Schulz, M.S., Bullen, T.D., Harden, J.W. and Peterson, M.L., 1996. Chemical weathering of a soil chronosequence on granite alluvium. I. Reaction rates based on changes in soil mineralogy. Geochim. et Cosmochim. Acta, 60: 2533-2550.

The URL of this page is: http://wwwrcamnl.wr.usgs.gov/isoig/isopubs/itch19refs.html
This page maintained by Carol Kendall, ckendall@usgs.gov
This page was last changed on November 24, 1998.
Return to the Periodic Table
Return to the IsoPubs Table of Contents