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Abstract Subsurface-water flow pathways in three different
land-use areas (non-irrigated grassland, poplar forest, and
irrigated arable land) in the central North China Plain were
investigated using oxygen (18O) and hydrogen (2H) isotopes
in samples of precipitation, soils, and groundwater. Soil water
in the top 10 cm was significantly affected by both evapora-
tion and infiltration. Water at 10–40 cm depth in the grassland
and arable land, and 10–60 cm in poplar forest, showed a
relatively short residence time, as a substantial proportion of
antecedent soil water was mixed with a 92-mm storm infiltra-
tion event, whereas below those depths (down to 150 cm),
depleted δ18O spikes suggested that some storm water
bypassed the shallow soil layers. Significant differences, in
soil-water content and δ18O values, within a small area, sug-
gested that the proportion of immobile soil water and water
flowing in subsurface pathways varies depending on local
vegetation cover, soil characteristics and irrigation

applications. Soil-water δ18O values revealed that preferential
flow and diffuse flow coexist. Preferential flow was active
within the root zone, independent of antecedent soil-water
content, in both poplar forest and arable land, whereas diffuse
flow was observed in grassland. The depleted δ18O spikes at
20–50 cm depth in the arable land suggested the infiltration of
irrigation water during the dry season. Temporal isotopic var-
iations in precipitation were subdued in the shallow ground-
water, suggesting more complete mixing of different input
waters in the unsaturated zone before reaching the shallow
groundwater.
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Introduction

Soil water is the transition between precipitation and ground-
water, and knowledge about subsurface soil-water flow path-
ways in the unsaturated zone is hence important for water
resources management and for analyzing pollutant transfer
to the aquifer (Jin et al. 1999; Liu et al. 2015; Nimmo 2005;
Rusjan et al. 2008). Stable isotopes of oxygen (18O) and hy-
drogen (2H) are conservative and are, as molecules of water,
naturally supplied by precipitation. Their proportions are al-
tered only by physical processes like mixing with isotopically
different waters or evaporation in the unsaturated zone, and
thus can provide time-integrated information on subsurface
hydrological processes in soil, including evaporation
(Allison and Barnes 1983; Barnes and Allison 1988; Darling
and Bath 1988; Hsieh et al. 1998; Liu et al. 1995), infiltration
and downward percolation (Gazis and Feng 2004; Mathieu
and Bariac 1996; McGuire et al. 2002; Mueller et al. 2014;
Song et al. 2009; Stumpp and Maloszewski 2010), and
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residence time in subsurface water (Asano et al. 2002;
DeWalle et al. 1997; Kabeya et al. 2007; Lee et al. 2007;
McGuire et al. 2002; O’Driscoll et al. 2005; Rodgers et al.
2005). The rationale for using stable oxygen and hydrogen
isotopic compositions in tracing subsurface water pathways
is their seasonal as well as event-based or episodic variability
in precipitation (Allen et al. 2015; DeWalle et al. 1997; Lee
et al. 2007; O’Driscoll et al. 2005; Robertson and Gazis 2006).

The infiltration of precipitation is affected by a complex
interplay of factors including the characteristics of precipita-
tion (Stumpp and Maloszewski 2010; Wang et al. 2016), soil
texture and structure (Huo et al. 2014; Li et al. 2015; Mathieu
and Bariac 1996), topography (Dahlke et al. 2012; Hopp and
McDonnell 2009; Lv et al. 2013; Mueller et al. 2014; Zhao
et al. 2013), vegetation (Brodersen et al. 2000; Liu et al. 2015;
Song et al. 2011; Stumpp et al. 2009a, b), and spatial and
temporal scales (Hsieh et al. 1998; Li et al. 2015; Robertson
and Gazis 2006; Stumpp and Hendry 2012). In general, there
are two types of major soil-water movement: diffuse flow and
preferential flow (Nimmo 2005). Diffuse flow is driven by
gradients of soil-water potential, mixing with and forcing por-
tions of the preexisting soil water to also flow. Preferential
flow channels water through discrete pathways and bypasses
portions of the medium (Nimmo 2005, 2012). A number of
studies have emphasized the importance of preferential flow
processes influenced by the fissures and macropores produced
by cracks, plant roots, earthworm burrows, etc. (Hangen et al.
2005; Hardie et al. 2011; Mathieu and Bariac 1996; Nimmo
2005, 2010, 2012; Nimmo and Mitchell 2013; Stumpp and
Maloszewski 2010).

Several factors are critical to determining the relative pro-
portion of diffuse and preferential flow that occurs (Nimmo
2012). Antecedent soil moisture strongly influences the type,
depth and rate of water movement (Dahlke et al. 2012; Hardie
et al. 2011; Jaynes et al. 2001; Kung et al. 2000; Nimmo 2005;
Zhao et al. 2013). Hardie et al. (2011) found that increased
preferential flow correlated with decreased antecedent soil
moisture, in contrast to studies such as Jaynes et al. (2001)
and Kung et al. (2000). Zhao et al. (2013) concluded that high
antecedent soil moisture and high rain intensity favor the
generation of diffuse flow. Stumpp and Maloszewski (2010)
quantified preferential flow in the unsaturated zone of cropped
soils using a lumped dispersion model based on the hydrolog-
ical and stable isotope data and concluded that high-intensity
rain events could contribute to much preferential flow even if
the soil is initially dry. Liu et al. (2015) found that rainwater
from a small precipitation event penetrated soil to consider-
able depth, which suggests a dominance of preferential flow
with little precipitation when the water content was low. These
studies indicate that soil-water movement depends strongly on
rain intensity and antecedent soil moisture.

Comparison of stable isotopic compositions is a powerful
tool for investigating the mechanisms of soil-water movement

(Gazis and Feng 2004; Li et al. 2007; Liu et al. 2015;
O’Driscoll et al. 2005; Song et al. 2009, 2011; Zhao et al.
2013). Rainstorms that differ in isotopic composition may
cause variations in soil-water isotopic profiles. Diffuse flow
may result in an abrupt isotopic front that delineates isotope
ratios representing antecedent pore water from recent infiltra-
tion within the soil profile, whereas preferential flow frequent-
ly results in isotopic composition spikes deeper in the soil
profile (Gazis and Feng 2004; Mathieu and Bariac 1996;
O’Driscoll et al. 2005).

In the semi-arid North China Plain (NCP), precipitation
varies seasonally. Storms during the rainy season (June to
September) account for 70% of the annual precipitation
(Song et al. 2009, 2011; Wang et al. 2008). During the dry
season (October toMay), farmers irrigate to supply crop water
needs (Lin et al. 2013; Ma et al. 2016). By measuring the
stable isotopic compositions of precipitation, soil water and
groundwater, Li et al. (2007) and Song et al. (2009, 2011)
investigated rainy-season preferential flow processes and
groundwater recharge in the piedmont alluvial plain. Many
other studies employing environmental tracers (chloride, fluo-
ride and sulfate), artificial tracers (bromine; Lin et al. 2013;
Wang et al. 2008), and thermonuclear tritium profiling (Jin
et al. 2000; Rohden et al. 2010) also elucidate NCP recharge
processes based on the assumption of diffuse flow. The infil-
tration and flow mechanisms, however, remain controversial.

The objective of this study is to improve the understanding
of subsurface water flow pathways by investigating the trans-
formation of the meteoric isotopic signal through the upper
unsaturated zone for sites with different vegetated soils in the
central alluvial and lacustrine plain of NCP. In order to achieve
this objective, the temporal variation of stable isotopic com-
positions in precipitation on a daily basis and in groundwater
at biweekly intervals was monitored from April 2012 to
October 2013. The soil profiles were simultaneously drilled
and soil water was extracted for stable isotopic composition
analysis both in the rainy and dry seasons.

Materials and methods

Site description

The North China Plain (Fig. 1a,b), located at 112°30′E–
119°30′E and 34°46′N–40°25′N, with a population of more
than 200million and area of approximately 150,000 km2, is an
important region of China politically, economically, and agri-
culturally. The NCP consists of the piedmont plain, alluvial
and lacustrine plain, and littoral plain, from west to east. It is
bordered by the TaihangMountains to the west and Bohai Sea
to the east, by the Yanshan Mountains to the north, and the
Yellow River to the south (Chen et al. 2003), where
Quaternary aquifer systems developed at different depths
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(Foster et al. 2004; Zhang et al. 1997). The thickness of
Quaternary sediments varies considerably from 150 to
600 m. Fluvial deposits dominate in the piedmont plain, allu-
vial and lacustrine deposits in the central plain, and alluvial
deposits with interbedded marine deposits in the littoral plain.
The NCP has amiddle-latitude continental semi-arid monsoon
climate, with a mean annual temperature of 12–13 °C, and
mean annual precipitation and potential evaporation of 500–
600 mm and of 1,100–1,800 mm, respectively. Because of
monsoonal influence, the rainy season (June to September)
accounts for the abundant annual precipitation (70%) com-
pared to the long dry season (October to May).

Groundwater is the main source of water supply of the
NCP (Foster et al. 2004; Shi et al. 2014; Sun et al. 2015).
Nearly 70% of the total water consumption is for agriculture
(Ma et al. 2016). The long-term increased groundwater
pumping has resulted in increasing thickness of unsaturated
zone (Sun et al. 2015) and delay in the process of vertical
recharge to the water table (Huo et al. 2014).

Cultivars of winter wheat and summer maize have fre-
quently changed over time. In the arable land, winter wheat
is usually planted in early October, and harvested during the
first 10 days of June. Summer maize is planted immediately
after wheat harvest and harvested at the end of September

(Sun et al. 2015). Flooding irrigation is conducted mainly
during April to May and in October, of which approximate
70% is for wheat irrigation (Ma et al. 2016).

Field studies were conducted at three vegetated soils in the
central alluvial and lacustrine plain of NCP (Fig. 1c). Site A
and site B are non-irrigation land covered by grass (Carex
humili and C. lanceolata) and poplar (Ponulus hopeiensis)
respectively, while site C is managed as long-term arable land
and used for irrigated winter wheat (Triticum asetivum) and
summer maize (Zea mays). The land cover proportion by pop-
lar, arable land and grass are roughly 0.18, 94.7 and 0.2%,
respectively (Yang et al. 2007). The precipitation and snow
samples were collected about 50 m away from the soil profiles
at site A (Fig. 1c). The soil textures were defined according to
the United States Department of Agriculture (USDA) soil tex-
ture classification (Gee and Or 2002). Soil profiles included
sandy loam, silt loam, and loam and contained various pro-
portions of sand, silt and clay (Fig. 2).

Sample collection

Water samples from precipitation, snowmelt, groundwater and
soil water were collected for oxygen and hydrogen isotopic
analyses from April 2012 to October 2013. Precipitation was

Fig. 1 The location of study area: a North China Plain (from Lin et al.
2013); b study area (from Chen et al. 2003); c sampling locations: soil
sample profiles at sites A, B and C; the precipitation and snow samples

were collected at site A, the shallow groundwater (G1, deep < 50 m) and
deep groundwater (G2, deep 230 m) were collected at site C
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collected at site A (ground surface elevation 17 m above sea
level) in an all-weather rain gauge into which mineral oil was
poured to minimize evaporation (Fig. 1c). Snow was sampled
by collection at the ground surface in a polyethylene tray
(O’Driscoll et al. 2005; diameter 50 cm) and retrieved manu-
ally in 500-ml plastic air-tight rain collectors to melt at room
temperature. Samples were gathered as soon as possible after a
precipitation or snow event. The oxygen isotopic composition
of throughfall and open rainfall is different for individual
storm events (DeWalle and Swistock 1994), and from hereaf-
ter precipitation, snowmelt and throughfall is referred to as
precipitation.

Deep groundwater (G2, well depth 230 m, for irrigating)
and shallow groundwater (G1, well depth < 50 m with ground-
water depth 9.0 m) were collected at approximately biweekly
intervals during the period of August 2012–October 2013 at
site C (Fig. 1c). The deep groundwater was collected from the
G2 well pumping station. In order to avoid contamination or
evaporation, the well was pumped for a minimum of 5 min
before sampling, and the water samples were taken directly at
the outlet of the pump. Shallow groundwater was collected
from the water level surface at the G1 well, about 100 m south
of the G2 well collector. The water table depth of G1 well is as
deep as 9.0 m; the fractionation of the surface well water is
negligible when sampling.

For soil-water isotope values, soil samples were taken from
a plot smaller than 5 × 2 m at each site, covered by different
vegetation, on 24 July, 2, 4 and 13 August 2012 during the
rainy season, and 22 October 2012 and 18 April 2013 during
the dry season. At sites A, B, and C, soil samples were col-
lected with a manual auger from every 10-cm interval between
10 and 150 cm depth (main root zone of 0–120 cm in the
arable land). The samples were placed in glass bottles and
sealed with wax and packaging tape immediately after sam-
pling to prevent fractionation caused by evaporation. All soil
samples were stored in a deep freezer and kept at −18 °C until
analysis, which occurred within 150 days from the sample
collection (Robertson and Gazis 2006; Sugimoto et al.
2003). Soil-water content (percent by volume) was measured

manually at the depth of soil sampling with time domain re-
flectometry (TDR, MPM-160, Australia, ICT International
Pty Ltd.).

Isotope analysis

Cryogenic vacuum extraction is a widely utilized method for
water extractions from unsaturated soil samples (Araguás-
Araguás et al. 1995; Koeniger et al. 2011; Orlowski et al.
2013, 2016; Shurbaji and Phillips 1995), which has been
shown to yield as accurate and reproducible results as other
extraction methods (Ignatev et al. 2013; Ingraham and Shadel
1992; Revesz and Woods 1990; Walker et al. 1994). Past and
more recent studies (Araguás-Araguás et al. 1995; Koeniger
et al. 2011; Orlowski et al. 2013, 2016; Walker et al. 1994;
West et al. 2006) have shown that cryogenic extraction con-
ditions (extraction time, temperature, vacuum threshold) and
physicochemical soil properties can impact the extracted soil-
water isotope results.

In this study, two extraction systems were applied, using
just one independent extraction line and a single distillation
system. The extraction pressures were as low as <1.0 Pa. The
extraction temperature ranged from 75 to 100 °C. The extrac-
tion time varied from 4 to 7 h. The details on the laboratory
procedure are similar to Shurbaji et al. (1995).

In order to validate the accuracy and reproducibility of the
δ18O and δ2H values by this cryogenic vacuum extraction,
two sets of extra experiments employing five liquid water
samples and five silt loam soil samples were set up. The first
set of experiments was performed with liquid water of known
isotopic composition to test the accuracy of this vacuum dis-
tillation method. The liquid water samples were taken during a
rainstorm on 28 June 2012 at Wuhan, China (δ18O and δ2H
values of −3.92 and −14.6‰). Around 100-ml of liquid water
was split into five individual water samples, which were dis-
tilled for 4 h (at extraction temperature 75 °C). The second set
of experiments was aimed at evaluating the reproducibility
and accuracy of the δ18O and δ2H values distilled from soil.
The silt loam was sampled from site B in the study area

Fig. 2 The fraction percent of the soil grain size at the three sampling sites: a grassland at site A; b poplar forest at site B; c arable land (summer maize
and winter wheat) at site C
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(Fig. 1c). In the first step, the silt loam soil sample was oven
dried for 24 h at 120 °C. Around 5 kg of oven-dried silt loam
was split into five individual samples and evenly hydrated
with 20 ml of water of known isotopic composition (liquid
water in the first experiments). Extraction was done for 7 h at
100 °C. The results are given in Table 1.

After the split-sample experiments, approximately 150 g
soil, for all samples collected from the study area, was sub-
jected to continuous heating for 7 h, with final extraction
temperature approaching 100 °C. Approximately 10–40 ml
of extracted water was trapped at liquid nitrogen temperature.
The details on the laboratory procedure are similar to Shurbaji
et al. (1995). The soil remaining after vacuum distillation was
removed and dried in the oven at 120 °C for 24 h, demonstrat-
ing that the complete extraction from the original soil water
was more than 99.90% (in terms of the weight) after the vac-
uum distillation, based on 81 soil samples. Consequently, all
of the interstitial soil water, which was a combination of tight-
ly bound and relatively mobile water (Araguás-Araguás et al.
1995; Landon et al. 1999), was extracted at 100 °C extraction
temperature; therefore, the sample size and heating time and
temperature were feasible for complete extraction even though
fractionation occurred during the boiling process.

The measurements for oxygen and hydrogen isotope ratios
were conducted at the State Key Laboratory of Biogeology
and Environmental Geology, China University of
Geosciences, Wuhan, China. All stable isotopic compositions
were measured using a Finnigan MAT-253 mass spectrometer
(Thermo Fisher, USA, manufactured in Bremen, Germany),
with the TC/EA method (Gong et al. 2007). Results were
presented in δ‰ with respect to the Vienna Standard Mean
Ocean Water (VSMOW, Gonfiatini 1978) according to

δsample ‰ð Þ ¼ Rsample

.
Rstandard−1

� �
� 1000 ð1Þ

where δsample is the isotope ratio of sample relative to the
VSMOW, R is the 2H/1H or 18O/16O atomic ratio. The stable

isotopes 2H and 18O were measured with an analytical preci-
sion of 0.5‰ vs. VSMOW for δ2H and of 0.1‰ for δ18O.

Results

Accuracy and reproducibility of the cryogenic vacuum
extraction

The standard deviations (Table 1) for liquid water samples
were 0.09‰ for δ18O and 0.8‰ for δ2H, for silt loam soil-
water samples were 0.15‰ for δ18O and 0.77‰ for δ2H,
respectively. Two soil-water samples showed slightly more
depleted δ18O values (−4.12 and −4.22‰; Table 1) than the
initial hydrated water (−3.92‰). This was probably due to
fractionation during distillation. In this study area, the soil
types are sandy loam, silt loam, and loam (Fig. 2), and the
fraction of clayey soil is overall less than 20% (at the depth of
130 cm at site C is 28.5%). The results (Table 1) showed that
the proposed cryogenic vacuum extraction can achieve high
accuracy for both liquid water samples and silt loam soil sam-
ples with low water content (around 2.0% by weight).

δ18O and δ2H values in precipitation and groundwater

The δ18O and δ2H values of daily precipitation samples and
biweekly groundwater samples collected in the study area
between April 2012 and October 2013 are presented in
Figs. 3 and 4. The monitored local precipitation amount and
temperature are shown in Fig. 5. Overall, the precipitation
δ18O and δ2H values ranged from −12.0 to −1.7‰ and
−98.9 to −13.3‰, respectively. The amount-weighted mean
δ18O and δ2H values of precipitation in the dry season (−10.6
and −84.3‰, respectively) were more depleted than those in
the rainy season (−7.6 and −63.2‰, respectively), with
amount-weighted annual mean values of −7.9 and −65.7‰,

Table 1 Results of the extraction
experiments with liquid water
samples and silt loam soil samples
doped with water of known
isotopic composition

Sample
no.

Vacuum distillation from liquid water Vacuum distillation from soil

δ18O (‰) δ2H (‰) Sample
size (ml)

δ18O (‰) δ2H (‰) Gravimetric water
content (%)

WHP01 −4.05 ± 0.07 −15.4 ± 1 20 −4.12 ± 0.09 −13.9 ± 0.7 2.04

WHP02 −4.06 ± 0.03 −15.7 ± 0.7 20 −3.91 ± 0.09 −14.8 ± 0.1 1.93

WHP03 −3.94 ± 0.01 −14.2 ± 0.3 20 −3.86 ± 0.07 −15.2 ± 0.3 2.03

WHP04 −3.87 ± 0.07 −13.8 ± 0.3 20 −3.93 ± 0.03 −13.3 ± 0.5 2.11

WHP05 −3.90 ± 0.05 −14.5 ± 0 20 −4.22 ± 0.04 −14.7 ± 0.2 1.92

Average −3.96 −14.72 - −4.01 −14.38 -

SD 0.09 0.8 - 0.15 0.77 -

The δ18O and δ2 H values for the liquid water sample and doping water were−3.92 and−14.6‰, respectively

SD standard deviation
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respectively. The local meteoric water line (LMWL) can be
defined by regression based on 37 precipitation δ18O and δ2H
values (Fig. 3). Both the linear slope (7.6) and intercept (−3.7)
of the LMWL are lower than that of the global meteoric water
line (GMWL, 8 and 10, respectively; Craig 1961).

The δ18O and δ2H values in groundwater show much
narrower range than those in precipitation, ranging from

−6.7 to −4.7‰ and −53.5 to −41.3‰ with mean values of
−5.5 and −45.1‰ for shallow groundwater (G1), and ranging
from −11.1 to −10.3‰ and −83.4 to −79.9‰ with mean
values of −10.7 and −82.1‰ for deep groundwater (G2), re-
spectively. It is shown in Fig. 3 that the shallow groundwater
samples fall along the upper part of the LMWL, while the
deep groundwater samples plot in a tight cluster on the lower
end of the LMWL (Fig. 3); whereas it is shown in Fig. 4 that
the temporal variations of δ18O and δ2H values for both the
shallow and deep groundwater are significantly smaller than
those in precipitation.

Soil-water content and soil-water δ18O values

The temporal variation of soil-water content (percent by vol-
ume) during the rainy season of 2012 is shown in Fig. 6. Soil-
water content at sites A and C were higher than those at site B;
the largest temporal variability was observed at site A, while at
site C soil-water content was relatively steady from 24 July to
17 August 2012.

Figure 7 presents the vertical profiles of soil-water δ18O
values and soil-water content during the rainy season moni-
tored on 24 July, and on 2, 4, and 13 August 2012. These dates
fall before and after a large, continuous rainstorm event during
30 July to 1 August 2012 (total precipitation amount 92.1mm,
amount-weighted mean δ18O –10.4‰, referred to hereafter as
the B92-mm storm^). Soil-water δ18O values were character-
ized by smaller variance for the three sites on 24 July before
the 92-mm storm (site A from −9.4 to −6.0‰, site B from
−7.0 to −4.1‰, and site C from −7.5 to −6.1‰, respectively)
than those after the 92-mm storm on 2, 4, and 13 August (site
A from −9.6 to −6.2‰, site B from −9.3 to −4.9‰, and site C
from −9.6 to −6.4‰, respectively). Furthermore, the greatest
variability of soil-water δ18O values was observed at shallow
depth rather than in the deeper depth (Fig. 7). Vertical profiles
of soil-water δ18O and soil-water content during the dry sea-
son collected on 22 October 2012 and 18 April 2013 are
shown in Fig. 8. The soil profiles on 22 October 2012 and
18 April 2013 at site C were obtained 10 and 2 days later after
irrigation, respectively, while there were no irrigation at sites
A and B. The greatest variability was observed at site C af-
fected by irrigation and the lowest variability was observed at
site B (Fig. 8).

Discussion

Origin of groundwater based on δ18O and δ2H values

The δ2H–δ18O values (Fig. 3) for shallow groundwater (G1)
and deep groundwater (G2) cluster at two distinct zones along
the LMWL, indicating that both are local precipitation origins.
Moreover, distinct isotopic compositions suggest two types of

Fig. 4 Temporal variation of a δ18O and b δ2H values, in precipitation,
shallow groundwater (G1, deep < 50 m) and deep groundwater (G2, deep
230 m) from April 2012 to October 2013. The orange solid circles
indicate the 92-mm storm that occurred from 30 July to 1 August with
the mean δ18O and δ2H values of −10.4 and −81.9‰

Fig. 3 Relationship between δ18O and δ2H values of precipitation at site
A and shallow groundwater (G1, deep < 50 m) and deep groundwater
(G2, deep 230 m) at site C during the period of April 2012–October
2013. 6.5, 76.9 and 8.7 mm precipitation happened on 30 July, 31 July
and 1 August 2012 are indicated. Dash line and solid line correspond to
the global meteoric water line (GMWL) and local meteoric water line
(LMWL), respectively
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origins for shallow and deep groundwater in the study area.
Shallow groundwater samples cluster along the LMWL and
were close to the precipitation during the rainy season (Fig. 3),

which might indicate that the isotopic composition of recharge
was dominated by water from rainy season infiltration. The
more enriched isotope values in shallow groundwater com-
pared with the amount-weighted mean value of precipitation
in the rainy seasonmight indicate fractionation by evaporation
during the soil-water infiltration. Two different origins might
explain the isotopically depleted deep groundwater. One pos-
sibility is the meteoric origin during a period of colder climate
than in modern times, and another possible origin is the lateral
flow of snowmelt-derived groundwater from the adjacent
mountain areas. These two possible origins of the deep
groundwater were proved by previous studies in the NCP
(Chen et al. 2003; Liu et al. 2010; Zhang 2005). Liu et al.
(2010) indicated that altitude is the main geographic factor
controlling the isotopic composition of precipitation in the
NCP and the δ18O value depletes 0.2‰ with elevation in-
creasing 100 m; therefore, the recharge elevation of the deep
groundwater could be estimated to be approximately 1,400 m
by comparing the mean δ18O value of deep groundwater
(−10.7‰) at site C (elevation 18 m) with the value of local
precipitation (mean δ18O –7.9‰). Consequently, the data in-
dicate that the source of groundwater withdrawn as irrigation
in the study area is isotopically different from the local
precipitation.

Isotopic temporal variations in precipitation
and groundwater

Large temporal variations in isotopic compositions of precip-
itation from day to day are common. The precipitation showed
substantial variation in the daily δ18O and δ2H values for both
the dry season (−11.9 to −4.9‰ and −98.8 to −43.1‰, respec-
tively) and rainy season (−12.0 to −1.7‰ and −98.9 to
−13.3‰, respectively; Fig. 4). This highlighted the episodic
δ18O and δ2H variability of precipitation, and thus permitted
identification of the discrepant precipitation input in the un-
saturated zone. Some depleted δ18O and δ2H values occurred
in the rainy season of 2012 (29 June of −12.0 and −98.9‰; 9
July of −10.1 and −81.5‰; 26 July of −10.8 and −84.6‰; and
31 July of −10.6 and −83.9‰); these, however, resulted in a

Fig. 6 Soil-water content (percent by volume) observed manually by
TDR at 10, 20, 40, 60, 80, 120 and 150 cm at the three sites from July
to August 2012. Sites a A, b B and c C

Fig. 5 Daily precipitation
amount and temperature at site A
from April 2012 to October 2013.
The snow depths were measured
on a daily basis and converted
from melted-snow depths to
precipitation amount (15 mm
snow approximately 1 mm
snowmelt). The orange bars
indicate the 92-mm storm
occurred from 30 July to 1 August
with the total amount 92.1 mm
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less well-defined seasonal cycle of precipitation stable isoto-
pic compositions (Fig. 4).

Highly variable δ18O and δ2H values from the 92-mm
storm were observed on the basis of sequential daily samples
collection (30 July of −6.9 and −55.0‰, amount 6.5 mm; 31
July of −10.6 and −83.9‰, amount 76.9 mm; 1 August of
−10.9 and −84.7‰, amount 8.7 mm; seen in Figs. 3, 4, and
5). In a study of meteoric water along a climate gradient on the
east side of the Cascade Mountains (Washington, USA),

Robertson and Gazis (2006) found that the isotopic composi-
tions of precipitation may vary between the beginning and end
of a significant rainstorm. Indeed, Smith et al. (1979) had
confirmed that highly variable isotopic compositions occurred
in a single storm at a single station.

The stable isotopic compositions of shallow groundwater
(mean: δ18O –5.5‰, δ2H –44.9‰,) and deep groundwater
(mean: δ18O –10.7‰, δ2H –82.1‰) were relatively constant
and the temporal variances were much subdued compared
with those of precipitation (Fig. 4). On the other hand, it can

Fig. 7 Vertical profiles of soil-water δ18O values and soil-water content
(percent by volume) observed in the rainy season of 2012 at the three
sites: a A, b B and c C. The accuracy of the cryogenic vacuum extraction
for soil-water δ18O and δ2H are 0.15 and 0.77‰, respectively. The sky
blue arrows indicate the 92-mm storm that occurred from 30 July to 1
August with the amount-weighted mean δ18O value of −10.4‰. The red
arrows indicate the precipitation during the rainy season with amount-
weighted mean δ18O value of −7.6‰

Fig. 8 Vertical profiles of soil-water δ18O values and soil-water content
(percent by volume) observed on 22 October 2012 and 18 April 2013 at
the three sites: a A, b B and c C. The accuracy of the cryogenic vacuum
extraction for soil-water δ18O and δ2H are 0.15 and 0.77‰, respectively.
The sky blue arrow indicates the irrigation water from G2 well with the
mean δ18O value of −10.7‰. The red arrows indicate the precipitation
during the dry seasonwith amount-weightedmean δ18O value of−10.6‰
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be seen in Fig. 4 that shallow groundwater showed a signifi-
cant decrease to more depleted isotopic values both for the
δ18O (∼ –1.2‰ change) and δ2H (∼ –8.9‰ change) values
from the beginning of the 2013 rainy season. As mentioned in
Fig. 3 and related discussions, shallow groundwater is possi-
bly mainly recharged during the rainy season; however, the
amount-weighted mean δ18O and δ2H values of precipitation
in the rainy season were much more enriched than those in the
dry season. Therefore, one would hypothesize that the possi-
bilities are: (1) precipitation and/or irrigation water in the dry
season (with much depleted isotopic values) had reached the
shallow groundwater, and/or (2) storm water with depleted
isotopic values in the rainy season reached the groundwater
through macropores by preferential flow. A similar phenom-
enonwas also observed in the NCP (130 km north of the study
area) by Song et al. (2011), who concluded that shallow
groundwater recharge from precipitation mainly occurred in
the rainy season, especially when rain-storms or successive
heavy rain events happened.

The temporal variation of isotopic composition in precipi-
tation, shallow groundwater and deep groundwater during the
sampled period is expressed as the coefficient of variation
(CV). The CVs for δ18O and δ2H were 35.2 and 35.0% (pre-
cipitation), 10.2 and 7.9% (shallow groundwater), and 2.1 and
1.0% (deep groundwater), respectively, which highlights the
relative lack of variability in δ18O and δ2H in shallow ground-
water and deep groundwater compared with that of the
precipitation.

Studies have shown that the attenuation of temporal isoto-
pic composition of shallow groundwater depends on the thick-
ness of the unsaturated zone (Clark and Fritz 1997), and that
the variation of shallow groundwater can be somewhat small-
er than that of precipitation (Asano et al. 2002; DeWalle et al.
1997; Kabeya et al. 2007; Kortelainen and Karhu 2004;
McGuire et al. 2002; O’Driscoll et al. 2005; Rodgers et al.
2005; Song et al. 2011). Song et al. (2009) found that the CV
of shallow groundwater for δ2H ranged from 13 to 9% in 2005
and 2006 at site HS (15 km southern to the present study area)
with the shallow groundwater depth ranging from 2.5 to
4.5 m. The smaller CV results from the present study would
be ascribed to the deeper groundwater depth (9.0 m); conse-
quently, the isotopic variation of precipitation was integrated
by the homogenization of the aquifer water.

Infiltration by a 92-mm storm based on soil-water content
and δ18O values

Comparison of soil-water content (percent by volume) and
soil-water isotope profiles monitored before and after the 92-
mm storm (Fig. 7) reveals important aspects of soil-water
behavior in response to infiltration. The variations of soil-
water content profiles (Fig. 7) were incongruous for the three
sites though they were monitored at the same time, likely due

to the difference of soil texture (Fig. 2). At site A (Fig. 7a), the
soil-water content on 24 July decreased with depth to a min-
imum (15.5%) at 60 cm depth, and then increased abruptly to
27.9% at 70 cm due to the evapotranspiration and soil strati-
fication between 60 and 70 cm. It is shown in Fig. 2a that the
sand content decreased dramatically and both the silt and clay
content increased from 40 to 70 cmwith clay content 14.3% at
70 cm and 6.7% at 40 cm, respectively. In addition, the soil-
water content above 70 cm was much greater on 2, 4 and 13
August than before the 92-mm storm (on 24 July), while re-
maining at relatively constant content at 35% below the depth
of 70 cm. As soil-water content can increase as a result of the
water above it being forced downward, it is not necessarily
caused by the downward percolation of precipitation from a
single storm. The increasing soil-water content up to 70 cm
depth on 2 August after the 92-mm storm will be discussed
later via integration of the isotope data.

It is shown in Figs. 6b and 7b that the soil-water content
increased from 21.1% on 24 July to 32.2% on 2 August in the
upper 40 cm, indicating that the soil-water content responded
to the infiltrated precipitation at site B. From then on, water
uptake by root and evaporation accounted for the reducing of
soil-water content in the upper 40 cm on 4 and 13 August.
Meanwhile, variations of the soil-water content below 40 cm
were almost negligible and stayed as low as 26.4% due to the
relatively homogeneous soil lithology (Fig. 2b), implying that
the precipitation input had not yet reached this depth, perhaps
due to the root water uptake and evaporation at the upper soil
layer (10–40 cm), or possibly bypass by preferential flow. The
soil-water content below 40 cm increased slightly on 2 August
and stayed overall steady. Song et al. (2009) carried out de-
tailed correlation analysis of precipitation and soil-water po-
tential at two sites (CZ and HS sites, in which CZ is 120 km
northeast and HS is 15 km south to the present study area) of
shallow groundwater areas in the NCP. Song et al (2009)
found that the soil water in the shallow depth (<30 cm) was
strongly affected by precipitation and evapotranspiration.

The soil-water content at site C (Figs. 6c and 7c) showed
smaller variations than at sites A and B before and after the 92-
mm storm, maintaining the highest values of the three sites.
Irrigation in the dry season and rainfall in the rainy season
supplied the deficit of soil water in the arable land. The gutters
in the arable land (site C) protect the crops from flooding. The
soil-water content in the upper 70 cm increased on 2 August
and decreased on 4 August to nearly the same values as on 24
July, indicating that the 92-mm storm had less effect at site C
than at sites A and B.

Soil-water δ18O profiles (Fig. 7) show that all of the soil-
water δ18O values were isotopically enriched compared to
those of the 92-mm storm (amount-weighted mean δ18O –
10.4‰). In the top 10 cm, low water content and relatively
enriched δ18O values (site A –7.0‰, site B –4.2‰, and site C
–6.1‰) on 24 July were observed even though there was a
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rainstorm on 9 July with more depleted δ18O values (amount
20.8 mm, δ18O –10.1‰). This discrepancy between the iso-
topically enriched 10-cm soil water on 24 July and depleted
δ18O values rainstorm on 9 July suggested the effect of evap-
oration in the superficial soil layer. After the 92-mm storm, the
soil-water δ18O values in the top 10 cm decreased to –9.1 and
–8.3‰ at site A (Fig. 7a) and to –9.3 and −9.0‰ at site B
(Fig. 7b) on 2 and 4 August, respectively. These soil-water
δ18O values were more depleted than those on 24 July, but
slightly more enriched than those of the precipitation, indicat-
ing that the pre-existing soil water was well mixed with the
infiltrated precipitation and showed the lowest residence time
in the top 10-cm layer. Variability in both water content and
δ18O values is larger for the surface horizons than for deeper
in the soil profile as the evaporation and downward flow be-
gan at the soil–atmosphere interface and worked progressively
downward.

The soil water in the top 10 cm stayed enriched δ18O
values, after the 92-mm storm, on 2 and 4 August (−8.2 and
−7.0‰) at site C (Fig. 7c) than those at sites A and B. The
differences in soil-water δ18O values might be explained by
antecedent soil water, vegetation cover, and soil texture.

The mixing of infiltrating precipitation and antecedent soil
water is dependent to some extent on soil textures and might
have significant influence on the δ18O values of the soil water
(Brodersen et al. 2000; Hsieh et al. 1998). The soil-water
content did not change much, indicating that the mixing in
the shallow subsurface had the least impact at site C
(Fig. 7c); moreover, small variations of soil-water δ18O values
before (24 July) and after (2, 4, and 13 August) the 92-mm
storm also suggested that there were small portions of rainwa-
ter mixing with the antecedent soil water (Fig. 7c). The appar-
ent lack of infiltration on isotopic signatures in the shallow
subsurface at site C might indicate: (1) very slow diffuse flow,
and (2) the likelihood that infiltration was incorporated
through preferential flow. It is shown in Fig. 7c that there were
some soil-water-depleted δ18O spikes below 50 cm which
were not seen on 24 July, before the 92-mm rainstorm, indi-
cating that some rainwater reached below 50 cm bypassing the
upper soils, and the preferential flow might be reasonable. On
the other hand, more enriched soil-water δ18O values on 13
August were −6.3‰ (site A), −6.7‰ (site B), and −6.6‰ (site
C) at 10 cm depth (Fig. 7) could be attributed largely to evap-
oration and secondarily to the infiltrated precipitation with
enriched isotopic composition that occurred on 12 August
(δ18O = –5.9‰).

In the top 10–40 cm at sites A and C and 10–60 cm at site
B, soil-water δ18O values before the 92-mm storm (24 July)
were more enriched at site B (mean value −4.6‰) than that at
sites A and C (mean values −6.6 and −6.6‰, Fig. 7). As soil
water is not significantly fractionated by plant transpiration so
that root uptake does not affect the isotopic composition of
soil water (Dawson and Ehleringer 1991; Sharma and Hughes

1985; Turner et al. 1987), the more enriched δ18O values
would largely be ascribed to the much stronger evaporation
fractionation effect in the poplar land (site B) than that in the
grassland (site A) and arable land (site C). The three sites are
within ∼3 km of each other and the variance of amount and
isotopic compositions in precipitation are insignificant.
Previous studies concluded that evaporation and isotopic ex-
change with the atmospheric water vapor would lead in most
cases to an isotopic enrichment of intercepted water (Saxena
1987), though the enrichment were only 0.17–0.32‰ in cen-
tral Pennsylvania, USA (DeWalle and Swistock 1994) and
0.36–0.38‰ in the mountainous ‘Black Forest’ region of
southern Germany (Brodersen et al. 2000). Therefore, one
could make a hypothesis that the more enriched soil-water
δ18O values in the poplar land (site B) than that in the grass-
land (site A) and arable land (site C) was somewhat due to the
different isotopic input precipitation to the soil surface.

After the 92-mm storm, soil-water δ18O values at depths of
10–40 cm at sites A (mean −7.9‰) and C (mean −7.4‰) and
10–60 cm at site B (mean −6.7‰) observed on 2 August were
more depleted than those on 24 July (Fig. 7), indicating that a
substantial proportion of antecedent soil water wasmixedwith
the 92-mm storm infiltration (−10.4‰). Notably, increasing
soil-water content in the upper 40 cm at the three sites (Fig. 7)
confirmed that some portion of precipitation might reach this
depth. A detailed oxygen isotope study in precipitation and
soil water by Robertson and Gazis (2006) observed that the
pre-existing soil water was of great significance in controlling
the 18O signal in soil water, and therefore in distinguishing the
proportion of infiltrated water. Assuming that the soil water on
2 August is a mixture of the 92-mm storm (mean δ18O –
10.4‰) and antecedent soil water (collected on 24 July), iso-
topic mass balance considerations estimate the proportion of
antecedent soil water to be 61, 17 and 78% at 10 cm, and 65,
62 and 78% at 10–40 cm depth intervals at sites A and B and
C, respectively. An interesting phenomenon at the three sites
when the 92-mm storm occurred, is that δ18O and δ2H values
in the soil water were more depleted on 4 August than on 2
August 2012, probably because local heterogeneities cause
variability in samples not taken from the same spot.

Influence of irrigation infiltration

The soil profiles on 22 October 2012 and 18 April 2013 were
obtained 10 and 2 days later after irrigation at site C, respec-
tively. The soil-water deficit was as small during the dry sea-
son (October to the following May) as during the rainy season
(Figs. 7c and 8c). This highlights the influence of irrigation on
soil water in the arable land during the dry season. On the
other hand, the soil-water profile on 13 August (Fig. 7c)
showed relatively more enriched δ18O values (−7.7 −6.6‰)
from 10 to 80 cm, and the δ18O values of precipitation during
18 August and 4 October ranged from −8.6 to −4.8‰. As
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evaporation effects frequently cause more enriched δ18O
values in the residual water (Clark and Fritz 1997), one could
reasonably argue that the depleted δ18O spike (Fig. 8c) with
value −9.6‰ at 50 cm (22 October 2012) resulted from irri-
gation water (mean δ18O –10.7‰). Moreover, there was less
precipitation in the dry season (Fig. 5) with relatively depleted
δ18O values (−9.8−7.2‰); therefore, the depleted δ18O spike
(−8.4‰) at 20–30 cm on 18 April 2013 might derive from
typical mixing of irrigation water and winter precipitation or
snowmelt. Continuous mixing of precipitation and irrigation
with depleted δ18O values might account for the smaller dif-
ferences between the upper and lower horizon values (Figs. 7c
and 8c). Consequently, the soil-water content and δ18O pro-
files at site C are very different from those at sites A and B that
had no irrigation, which also confirmed that the irrigation
water played an important role in the groundwater circulation
(Lin et al. 2013; Ma et al. 2016; Sun et al. 2015; Wang et al.
2008). In addition, the isotopically depleted spikes of soil-
water δ18O at 120 cm were nearly the same on 4 August
2012 (−9.6‰, Fig. 7c) and 18 April 2013 (−9.4‰, Fig. 8c),
possibly by chance. Another possibility is that irrigation water
(applied 2 days before the soil profile sampling, mean δ18O –
10.7‰) reached this depth by preferential flow.

At sites A and B, the soil profiles showed relatively lower
soil-water content and enriched δ18O values than those in the
rainy season in the upper layers (10–90 cm at site A and 10–
120 cm at site B; Figs. 7a,b and 8a,b), and soil-water content
increased with depth, while the soil-water δ18O decreased
with depth. Below those depths the soil-water content and
δ18O profiles showed little change for the entire season, im-
plying that the deeper the soil profiles, the more homogenized
are the isotope values due to dispersion. This trend also
highlighted that the upper horizons of the unsaturated soil
were impacted by water flow more than the deeper hori-
zons—for example, in the case of site A covered by grass
(Fig. 8a), the soil-water δ18O decreased from −6.1 to −8.6‰
on 22 October 2012 (10–90 cm) with an abrupt depleted δ18O
spike at 30 cm depth (δ18O = –8.2‰), while on 18 April 2013,
the soil-water δ18O decreased gradually from −5.5 to −9.6‰
(10–100 cm) mainly due to water flow and mixing within the
soil profile.

Subsurface water flow pathways

As preferential flow frequently results in isotopic composition
spikes (isotopically depleted or enriched soil water) deeper in
the soil profile, the soil-water depleted δ18O value spikes on 4
August at 120 cm depth (δ18O –8.1‰) and on 13 August at
130 cm depth (δ18O –8.4‰) were not seen at the same depth
on 24 July and 2 August at site B (Fig. 7b). This observation
indicated that some isotopically depleted precipitation moved
by preferential flow through the shallow soil through
macropores and mixed with isotopically enriched pre-

existing soil water at 120 and 130 cm depths. It is also inter-
esting to note that there was no depleted δ18O spike in the
profile on 2 August, indicating that there was some delay in
transmission of isotopically depleted precipitation to the
120 cm depth (Fig. 7b). Site B has been poplar land for more
than 20 years and local heterogeneities like the macropores
produced by root casts would be the likely source of
macropores. Meanwhile, the local heterogeneities would ex-
plain the absence of a soil-water-depleted isotopic spike on 2
August.

At site C, depleted δ18O spikes at 50, 70, 130, and 150 cm
depths on 2 August, at 120 cm on 4 August, and at 100 cm on
13 August, which were not seen on 24 July (Fig. 7c), also
indicated preferential flow pathways. Furthermore, some de-
pleted δ18O spike depths were much deeper on 2 August (130
and 150 cm) than those on 4 August (120 cm) and 13 August
(100 cm). One hypothesis is that there are two possible rea-
sons—firstly, there was upward water movement, and this
likely would cause soil-water isotopic mixing. The more-
depleted δ18O values (−9.6‰) on 4 August at 120 cm than
that on 2 August at 130 and 150 cm (−8.8 and −9.2‰) indi-
cated that the upward mixing process was probably not the
explanation. Secondly, the depleted δ18O spikes on 4 and 13
August were caused by water flowing more slowly through
some different macropore systems, which had different hy-
draulic conductivities.

Several studies provided evidence of preferential flow
bypassing upper soil layers by studying the stable isotopic
compositions of precipitation and soil water (Gazis and Feng
2004; Liu et al. 2015; O’Driscoll et al. 2005; Song et al. 2009;
Stumpp and Maloszewski 2010; Zhao et al. 2013). A soil
column experiment conducted byMilville (1990) showed that
direct preferential infiltration bypassed the soil matrix and
reached the depth of 140 cm in less than a day. The field
data conducted by Mathieu and Bariac (1996) also revealed
that direct infiltration along macropores of non-fractionated
rainwater reached the 100–200-cm depth soil layer shortly
after precipitation of more than 10 mm, while the upper soil
layer remaining unaffected.

The antecedent soil-water content at site B (Figs. 6b and 7b)
was overall much lower than at site C (Figs. 6c and 7c).
Meanwhile, it was found while sampling, that thick root pen-
etration was highly visible down to 130 cm (site B), which
additionally supports the hypothesis of the anomalies arising
from preferential flow of earlier precipitation through
macropores (Hardie et al. 2011; Hangen et al. 2005; Liu et al.
2015; Nimmo 2012; Nimmo andMitchell 2013). Some studies
have observed greater preferential flow at higher antecedent
soil-water content (Jaynes et al. 2001; Kung et al. 2000), and
some at lower antecedent soil-water content (Hardie et al.
2011; Liu et al. 2015; Zhao et al. 2013). Evidence was found
for preferential flow at sites B (low soil-water content) and C
(high soil-water content), though not at A.
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The depleted soil-water δ18O spikes in the poplar land and
arable land (Fig. 7b,c) also indicated that the preferential flow
was dominant when the high-intensity 92-mm rainstorm oc-
curred. These results are consistent with studies by Stumpp
and Maloszewski (2010), in which high-intensity storms con-
tributed a larger proportion of preferential flow relative to
diffuse flow, but contrast with studies such as those of Zhao
et al. (2013) and Liu et al. (2015), in which high rain intensity
favors diffuse flow and the small precipitation events could
generate recharge by preferential flow. In this study, soil-water
δ18O profiles at site A (Fig. 7a), however, indicate diffuse
flow. The pre-existing soil water with more enriched δ18O
values moved from 30 cm (24 July, δ18O –6.0‰) to 50 cm
(2August, δ18O –6.6‰) and 70 cm (13 August, δ18O –6.2‰),
showing that the input rainwater successively displaced pre-
existing mobile soil water pushing it downward. The observed
depleted soil δ18O values in the upper 40 cm soil layer on 2
and 4 August at site A (Fig. 7a) indicated that rainwater first
fills up soil pores in the 10–40-cm soil layer by diffuse flow,
consistent with results reported by Dahlke et al. (2012), Gazis
and Feng (2004), and Zhao et al. (2013). This suggested that
antecedent soil-water content and rain intensity did not always
play a crucial role in preferential flow, and that vegetation type
and soil texture were also very important to flow pathways in
the unsaturated zone. It can be seen in Fig. 2 that the propor-
tion of sand in the top 40 cm is as high as 27.9–39.4% in the
grassland (site A), which indicates that the sandier the soils,
the less likely overland flow will occur and the greater the
chances of diffuse flow.

Conclusions

Stable isotopes (δ18O and δ2H) in precipitation were investi-
gated on a daily basis, and in shallow groundwater (<50 m)
and deep groundwater (230 m) on a biweekly basis, from
Apr. 2012 to Oct. 2013 in the central alluvial and lacustrine
plain of NCP, to give insight into the temporal variations and
transition between the precipitation and groundwater. Soil-
water stable isotopes down to 150 cm, at 10-cm intervals,
covered by grass (C. humili and C. lanceolata; site A), poplar
(P. hopeiensis; site B) and winter wheat (T. asetivum) and
summer maize (Z. mays; site C) in different seasons from
2012 to 2013, were extracted to understand the subsurface
water flow pathways. The following conclusions can be
drawn.

Firstly, the δ18O and δ2H values in shallow groundwater
(deep < 50 m) were relatively constant compared to that of the
precipitation for the whole year, which suggested the complete
mixing of different input waters during the recharge period to
the shallow groundwater in this area. The deep groundwater
(deep 230 m) used for irrigation is more depleted in δ18O and
δ2H than the local precipitation and shallow groundwater,

reflecting a meteoric origin during a period of colder climate
with isotopically lighter composition, or lateral flow from the
surrounding mountain areas.

Secondly, the soil-water data collected at three vegetated
sites indicated that the δ18O values of soil water in the
shallowest 10 cm depth was significantly affected by both
evaporation and infiltration. Water in the shallow 10–40-cm
interval depth showed a relatively short residence time as a
substantial antecedent soil water was mixed with the 92-mm
storm infiltration. The antecedent soil-water fractions de-
creased and showed longer residence time with increasing
depth. These data also indicated that diffuse flow and prefer-
ential flow coexisted for the various vegetated soils at a small
scale. The local heterogeneities affected the subsurface water
flow pathways. Preferential flow was common within the ac-
tive plant root zone both in the poplar and arable land. The
grassland with high soil-water content produced diffuse flow,
which highlighted that the unsaturated water flow pathways
were affected by comprehensive factors including antecedent
soil moisture content, vegetation type, precipitation intensity,
and soil texture.
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