Haverkamp, R., Reggiani, P., and Nimmo, J.R., 2002, Pro i

, Ry , P, , LR, , Property-transfer models, in Dan
J.H., and. Topp', G.C., eds., Methods of soil analysis, Part 4--Physical methods: Madisor
Wisconsin, Soil Science Society of America, p. 759-761, 781-782,

Haverkamp, R., and Reggiani, P., 2002, Physically based water retention prediction
models, in Da:_le, J.H.,'and Tppp, G.C,, eds., Methods of soil analysis, Part 4--Physical
methods: Madison, Wisconsin, Soil Science Society of America, p. 762-777, 781-782.

Nimmo, J.R., 2002, Property transfer from particle and a i i

) ) s s ggregate size to water retentior
in D;_me, J .H:, and '}"opp, G.C., eds., Methods of soil analysis, Part 4--Physical methods:
Madison, Wisconsin, Soil Science Society of America, p. 777-782.

3.3.5 Property-Transfer Models

RANDEI HAVERKAMP anp PAOLO REGGIANI, CNRS-LTHE, Grenoble, France
JOHN R. NIMMO, U.S. Geological Survey, Menlo Park, California

As defined in the previous sections of this chapter, the water retention curve ex-
presses the relation between soil water matric head (%,,) and volumetric soil water
content (8). Its highly nonlinear shape very much depends upon the particle-size
distribution, which determines the soil texture, and the arrangement of the solid par-
ticles referred to as soil structure (e.g., Richards & Weaver, 1944; Croney & Cole-
man, 1954; Salter & Williams, 1965; Sharma & Uehara, 1968; Reeve et al., 1973).
Other soil properties, such as organic matter content and soil water composition,
also influence the behavior of the water retention curve, but to a lesser extent.

The water retention curve is commonly expressed in terms of a parametric
water retention function. All of these parametric models (e.g., Brooks & Corey,
1964; Brutsaert, 1966; van Genuchten, 1980) involve fitting parameters to soil water
retention data (Section 3.3.4). Aside from the question of whether these parame-
ters are physically meaningful or not, a full description of the water refention func-
tion, 2,(8), requires at least three parameters: one or more dimensionless shape pa-
rameters and two dimensional scale parameters (one for water content and one for
matric head). As explained in the previous sections, several methods exist for the
estimation of water retention parameters from either laboratory measurements
(Section 3.3.2) or field measurements (Section 3.3.3). However, both laboratory and
field procedures are highly time-consuming, and their extrapolation to large areas
is rather unrealistic. This has motivated numerous attempts in the last three decades
to predict soil water characteristic curves from more easily accessible field data,
such as textural information, organic matter content, and bulk density.

Prediction models can be grouped into two classes, which are (i) empirically
or (ii) physically based:

First, the empirical approach consists of relating the different soil character-
istic parameters to textural and structural soil properties by the use of statistical re-
gression analysis (e.g., Ghosh, 1976; Clapp & Hornberger, 1978; Gupta & Larson,
1979a; Bloemen, 1980; Brakensiek et al.. 1981; McCuen et al., 1981; Rawls & Brak-
ensiek, 1982; Cosby et al., 1984; Puckett et al., 1985; Wosten & van Genuchten,
1988; Vereecken et al., 1989; Schaap et al., 1998). Although most empirical mod-
els clearly show correlations between water retention and textural or structural soil
data, valid application is in general restricted to the soil tested. Hence, the results
are site- and data-specific and predictions may contain important errors in water con-
tent, especially at the wet end of the #,,(8) relationship, which is dominated by soil
structural parameters.
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Second, the few physically based models proposed in the literature (e.g., Arya
& Paris, 1981; Haverkamp & Parlange, 1986) postulate a fundamental relationship
between the water retention curve and measurable properties like the cumulative
particle-size distribution. The Arya—Paris (1981) model, the most commonly used,
divides the particle-size distribution into a number of fractions, assigning a pore vol-
ume and volumetric water content (6,) to each fraction, on the basis of the bulk den-
sity and the weight percentage of particles in each fraction. A corresponding ma-
tric head value, (h,,);, is computed using capillary theory to obtain A, from the
average pore size of the fraction. To move from particle size to pore size and from
pore size to matric head, an empirical parameter (o), later interpreted as the frac-
tal dimension of a tortuous pore (Tyler & Wheatcraft, 1989), was introduced. A sec-
ond physically based model, proposed by Haverkamp and Parlange (1986), allows
for a direct estimation of the parameters for the Brooks and Corey (1964) water re-
tention function for sandy soils in the absence of organic matter. The predicted /,,,(6)
curve is associated with the boundary (main) wetting curve of the hysteresis fam-
ily. Coupled with the hysteresis model proposed by Parlange (1976), the full fam-
ily of wetting curves can be predicted.

The physically based models are conceptually the most appealing. The un-
derlying hypothesis of shape similarity (different from shape identity) between the
shape of the cumulative particle-size distribution function and that of the water re-
tention curve, was recently confirmed by an analysis of the soil database GRIZZLY
(Haverkamp et al., 1998). Defining the shape of water retention curves by the shape
indicator mn and cumulative particle-size functions by the shape indicator MN (both
parameters are addressed in more detail in Section 3.3.5.1), the positive correlation
between mn and MN is clearly shown in Fig. 3.3.5-1. This result confirms the fact
that for a large number of soils the water retention shape parameter mn depends

w

Particle Size Shape Indicator (MN)

Water Retention Shape Indicator (mi)

Fig. 3.3.5-1. The particle-size shape indicator (MN) as a function of the water retention shape indica-
tor (mn) calculated for the 660 soils of the GRIZZLY soil database (Haverkamp et al., 1998).
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mainly on texture. A similar analysis for a particle-size scale parameter (D) and
matric head scale parameter (h,) shows no correlation (Fig. 3.3.5-2). This obser-
vation highlights the danger of predicting the soil structure-dependent scale pa-
rameters from soil textural information alone. The two texture-based models con-
sidered here (Section 3.3.5.1) take account of the soil structural effect only through
the dry bulk density (py,) embedded in the definition of the parameter (¢) for the
Arya—Paris model (1981) or through the proportionality factor between pore size
and associated particle diameter for the Haverkamp-Parlange mode]l (1986).

‘When soil structure is significant, the pore space defined by the size distri-
bution of the basic soil particles (conveniently referred to as the rextural pore
space) is not the dominant characteristic that defines the water retention scale pa-
rameters. When soil particles are bound together to form clods and crumbs, the po-
sition and orientation of these aggregates with respect to each other define an in-
teraggregate pore space (referred to as structural pore space), which is more
significant than the textural pore-size distribution for the determination of the
structure-dependent scale parameters for soil water content and matric head. To take
this effect of the structural pore space into account, Nimmo (1997) proposed a water
retention prediction model that considers a soil water retention curve as the sum of
two components, one textural (0,.) and the other structural (8,;). The structural part
of this model operates like a texture-based model that is based on aggregate sizes
rather than particle sizes.

Section 3.3.5.1 describes the principles of the two texture-based prediction
models of Arya and Paris (1981) and Haverkamp and Parlange (1986), with the pro-
cedures of application and comments on the pros and cons of the models. Section
3.3.5.2 describes the texture- and structure-based prediction model of Nimmo
(1997), with discussion of procedures and comments.
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Fig, 3.3.5-2. Matric head scale parameter /, as a function of the particle-size scale parameter D, cal-
culated for the 660 soils of the GRIZZLY soil database (Haverkamp et al., 1998).
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3.3.5.1 Physically Based Water Retention Prediction Models

RANDEL HAVERKAMP AND PAOLO REGGIANI, Domaine Universitaire,
Grenoble, France

3.3.5.1.a Introduction

Even though both the Arya—Paris (1981) and the Haverkamp—Parlange (1986)
model are based on the same hypothesis of shape similarity between the cumula-
tive particle-size distribution function and the water retention curve, the routing pro-
cedures used to navigate from the cumulative particle-size distribution to the cu-
mulative pore-size distribution, and subsequently to the water retention curve, are
different. While the Arya—Paris model uses discrete equations giving point values
of the water retention curve, the Haverkamp—Parlange model uses functional forms
leading directly to a parametric water retention function. The second fundamental
difference between the two models is that the Haverkamp—Parlange model has at-
tempted to take into account the problem of hysteresis. As the cumulative particle-
size distribution is unique for a given soil, only one associated water retention curve
can be predicted. In reality water retention is represented by a family of different
wetting and drying curves (hysteresis; Section 3.3.1). Hence, from a purely con-
ceptual point of view, it is necessary to choose whether the particle-size distribu-
tion function is associated with a wetting curve of the hysteresis loop or a drying
curve. Haverkamp and Parlange (1986) decided upon the main wetting curve for
reasons which will be explained in Section 3.3.5.1.c. The only simple but precise
hysteresis model available in the literature at that time (1986) was the prediction
model of Parlange (1976), which obliged the authors to consider a parametric
water retention function without inflection point, for example, the Brooks and
Corey (1964) water retention function:

0/0, = (/b )-  for by < by
0=0, for hy, < hyy <0 [3.3.5-1]

where 0 is volumetric water content (L? L—3); 8, is the volumetric water content at
natural saturation, chosen as the water content scale parameter; A, (L) is soil water
matric head taken to be negative and expressed in centimeters of water; /. is the
soil specific Brooks and Corey matric head scale parameter (L); and A is the di-
mensionless water retention shape parameter (see Section 3.3.4.a for more details).
A more adequate choice would have been the S-shaped van Genuchten (1980) water
retention function (see Section 3.3.4.b):

0/, = [1 + (hylhy)"T™" [3.3.5-2]

where £, is the soil specific van Genuchten matric head scale parameter (L), and
m and n are the dimensionless water retention shape parameters assumed to be linked
by:

m=1—(k,/n) [3.3.5-3]
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Van Genuchten (1980) introduced k,, to calculate closed-form analytical expressions
for the hydraulic conductivity function using the predictive conductivity model of
Burdine (1953), when &, = 1, or Mualem (1976), when k,, = 2. When other con-
ductivity functions, such as the one of Brooks and Corey (1964), are chosen, there
is no need to impose, a priori, an integer value of k. For large negative matric head
values the van Genuchten water retention equation (Eq. [3.3.5-2]) behaves like the
Brooks and Corey equation (Eq. [3.3.5-1]) with A = mn. However, it should be noted
that this identity has only been confirmed for soils with mn < .8 while using the
Burdine mode of the van Genuchten equation (Haverkamp et al., 1998). The cur-
vature of the van Genuchten relation for large |4,,| values thus depends on the prod-
uct mn, rather than on one of the individual parameters » or n. The product mn is
referred to as the water retention shape indicator (see also Fig. 3.3.5-1).

The choice of a parametric water retention function, for example, the Brooks
and Corey equation (Eq. [3.3.5-1]) or the van Genuchten equation (Eq. [3.3.5-2])
is not without consequences. As will be shown below, the type of equation to be
used for the cumulative particle-size distribution function is fully conditioned by
the choice of the expression used for the water retention curve. For example, start-
ing with the van Genuchten water retention equation requires using a van Genuchten
type of equation for the cumulative particle-size distribution function. Unfortunately,
the model of Haverkamp and Parlange (1986) had to compromise on this consis-
tency criterion. While for reasons of hysteresis (explained above) the authors had
to choose a Brooks and Corey expression for the water retention curve, they pre-
ferred for reasons of best fit a van Genuchten type-equation for the cumulative par-
ticle-size distribution function.

3.3.5.1.b Arya-Paris Model: Principies

This model involves dividing the cumulative particle-size distribution func-
tion into a number of class fractions with an average particle-size and fraction weight
assigned to each class. Assuming that the particles are spherical and the pores cylin-
drical, the number of particles (»;) in each class is determined by:

n; = (6W)/(rD}p,) [3.3.5-4]

where D; is the mean particle diameter (L) of the ith size fraction, W; is the corre-
sponding solid mass per unit sample mass (M), and py is the particle density (gen-
erally taken equal to p, = 2.65 g cm™ when C content is negligible). The values of
W, are chosen in such a way that the sum of all W, is unity.

The pore volume dVp; (L?) associated with each size fraction is defined by:

dVp; =TR?Le; [3.3.5-5]

where R, is the mean pore radius (L) and Le; is the effective pore length (L) of size
class i. In the absence of tortuosity the apparent pore length (L;) can be estimated
as the product of the number of particles in size class i and the mean particle di-
ameter (I);) of that class. However, for field soils the effect of tortuosity should not
be ignored. Therefore, Arya and Paris (1981) defined the effective pore length (Le;)
as:
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Le; = nfD; [3.3.5-6]

where o is a tortuosity correcting parameter (o > 1). When tortuosity effects are
negligible the value of ot equals 1. Applying the tortuosity (7) concept used by most
capillary models to express the apparent flow velocity per volume unit as a func-
tion of the flow velocity in soil pores (e.g., Burdine, 1953; Brooks & Corey, 1964;
Dullien, 1979), Eq. [3.3.5-6] gives:

(T = LefL; = nf"! (3.3.5-7]

where p is a tortuosity parameter. Although p should be considered as a soil spe-
cific variable defined for values of p > (0, some authors proposed a constant value
based on the capillary model of choice. For example, Brooks and Corey (1964) and
Dullien (1979) suggested p = 0.5, whereas Burdine (1953) used p = 1. Obviously,
when p = 0 there is no tortuosity and the effective pore length is equal to the ap-
parent pore length (Eq. [3.3.5-7]). The model of Arya and Paris sets p = 1, inde-
pendent of the soil in question. Arya and Paris then derived a nonlinear relation be-
tween the mean pore radius (R;) and the corresponding mean particle diameter (D;)
of the form:

R;=1/2 D|[(2en})/3]%3 [3.3.5-8]

where e is the void ratio defined as the ratio of the void volume fraction or poros-
ity, & (L* L), and the solid volume fraction:

e=¢/(1 —g) [3.3.5-9]

Equation [3.3.5-8] results from the argument that a pore length can be estimated
by the number of particles that lie along the pore path times the length contributed
by each particle (i.e., the particle diameter). For the sake of simplicity the void ratio
(e) and hence the soil porosity were considered to be constant for all particle-size
classes. This global porosity value for the total soil sample is referred to hereafter
as the apparent soil porosity, €. The parameter 0. was determined experimentally
through fitting and was found to vary between 1.31 and 1.43. An average value of
1.38 yielded satisfactory results (Arya & Paris, 1981).

Once the mean pore radius (R;) is defined (Eq. [3.3.5-8]), the corresponding
matric head, (hy,);, is determined by the classical capillary rise equation written in
its simplified form by (see Sections 3.3-1 and 3.3-2):

(hy); = —(0.149/R;) [3.3.5-10]

where the soil water matric head, (%,,);, and the mean pore radius, R;, are both ex-
pressed in centimeters.

Finally, the volumetric water content values are calculated from the pore vol-
umes dVp; (Eq. [3.3.5-5]). In doing so, it is assumed that the pore volumes gener-
ated by each size fraction are progressively accumulated, from smallest to largest
size fraction, and filled with water. The volumetric water content values at the upper
bounds of successive particle-size fractions are then calculated by:
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U=
8= Z dVpp, [3.3.5-11]
-

where 8; is the volumetric water content represented by a pore volume for which
the largest size pore corresponds to the upper limit of the ith particle-size range, and
Py is the dry soil bulk density (M L) related to the apparent soil porosity (€) by:

e=1-(p/ps) [3.3.5-12]

Note that the use of py, in Eq. [3.3.5-11] is justified by the fact that the sum of all
weight fractions W; is chosen equal to unity. Moreover, the use of Eq. [3.3.5-11]
implies that the maximum volume to be filled with water equals the porosity (g).
The influence of air entrapment (with 6, < &) is not taken into account by the model.
Finally, the average volumetric water content corresponding to the midpoint of a
given particle-size fraction is given by:

0,=(0,+ 0,2 [3.3.5-13]

Hence, the minimum input data necessary to operate the Arya—Paris prediction
model are the cumulative particle-size distribution curve and the dry bulk density
or soil porosity.

Procedure

1. Divide the cumulative particle-size distribution curve into a number of fractions
starting from the end representing the smallest-size particle. Arya and Paris sug-
gested 20 as an optimum number of fractions, with upper size limits for parti-
cle diameter at 1, 2, 3, 5, 10, 20, 30, 40, 50, 70, 100, 150, 200, 300, 400, 600,
800, 1000, 1500, and 2000 pm. An average particle diameter value (D) is as-
signed to each particle-size fraction. The steps described hereafter are then ap-
plied to each D; -value.

2. Calculate the fraction weights (W) from the cumulative particle-size distribu-
tion curve. The differences in cumulative percentages corresponding to succes-
sive particle sizes divided by 100 give values of W; such that the sum of all W;
1S unity.

3. Calculate the number of soil particles (»;) of the ith particle-size class by using
Eq. [3.3.5-4].

4, Calculate the mean pore radius (R;) by using Eq. [3.3.5-8] with the tortuosity
parameter o, equal to 1.38 and the void ratio (e) calculated from Eq. [3.3.5-9].

5. The pore volume fraction (dVp;) of the ith particle-size class is calculated by the
combined use of Eq. [3.3.5-5] and [3.3.5-6], with the values of »; and R; given
by the previous Steps 3 and 4.

6. The soil water matric head value, (hy);, is calculated from Eq. [3.3.5-10] using
the mean pore radius, R, expressed in centimeters.

7. Finally, the volumetric water content value (8;), corresponding to the midpoint
of the ith particle-size class, is calculated by the combined use of Eq. [3.3.5-11]
and [3.3.5-13].
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3.3.5.1.c Haverkamp-Parlange Model: Principles

Similar to the above prediction model, the Haverkamp-Parlange (1986) ap-
proach is based on the hypothesis of shape similarity between cumulative particle-
size distribution and water retention curves. However, instead of working with a dis-
crete formulation as used by the Arya—Paris model, the Haverkamp—Parlange
model is expressed in functional form. The model is composed of two submodules,
one that describes the routing procedure from particle size to water retention and
another that deals with the coupled hysteresis model.

Starting with the first module, the cumulative particle-size distribution func-
tion is expressed in the form of a van Genuchten type of equation (similar to Eq.
[3.3.5-2]):

F=[1+(DyD)]™ [3.3.5-14]

where F is the camulative distribution of particle weight per unit sample mass (M
M), D is the particle diameter (L), D, is a particle-size scale parameter (L), and
M and N are the particle-size shape parameters assumed to be linked by an expression
similar to Eq. [3.3.5-3]:

M=1-(kJ/N) [3.3.5-15]

The integer k;, is chosen identical to that used by the van Genuchten (1980) water
retention equation (Eq. [3.3.5-2]) with &, = 1. The product MN is referred to as the
shape indicator of the cumulative particle-size distribution (Fig. 3.3.5-1). The val-
ues of D, and M (and/or N) are calculated by fitting Eq. [3.3.5-14] to the experi-
mental cumulative particle-size data using a classical least-squares technique (e.g.,
Marquardt, 1963). With the cumulative particle-size distribution function defined,
the routing procedure between F(D) and the water retention curve is then to relate
the shape and scale parameters of /,,(0) to the parameters used for the description
of F(D).

Haverkamp and Parlange suggested a linear felationship between the pore ra-
dius, R, (L) and the corresponding particle diameter, D, of the form:

R=YD [3.3.5-16]

where 7 is a soil specific tortuosity parameter.' The estimation of y will be addressed
later in this section. Even though the R(D) relation given by Eq. [3.3.5-16] is quite
crude for general field soils, its use was assumed to be reasonable when structural
characteristics become independent of the degree of saturation, which is the case
for soils with relatively uniform particles. For these reasons the model was explic-
itly recommended for sandy soils. Combining Eq. [3.3.5-16] with the capillary rise
equation (Eq. [3.3.5-10]) gives:

! The particle-size/pore-size relation (Eq. [3.3.5-16]) was originally presented by Haverkamp and
Parlange (1986) in the form of D as a function of R rather than R as a function of D. Consequently, we
should read y! instead of ¥ when comparing the packing coefficient values with those given by
Haverkamp and Parlange. It is only for reasons of consistency that we have chosen to write the parti-
cle-size/pore-size relation (Eq. [3.3.5-16]) in a similar form as that used before in the context of the
Arya-Paris model (Eq, [3.3.5-8]).
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Ry = 0.149/¥D [3.3.5-17)

which permits the direct calculation of the matric head hy, as a function of D, once
the value of y1is known.

It follows from the R(D) relationship, given by Eq. [3.3.5-16], that the rela-
tive pore fraction and the relative solid fraction are equal. When defining the de-
gree of saturation, S, as the ratio of water content, 0, and porosity, €, the degree of
saturation can be set equal to the cumulative particle-size distribution (where the
particle density py is considered to be constant). However, due to air entrapment,
the water content at natural saturation (8,) seldom reaches saturation of the total pore
space. If we assume that air is contained not only in the largest pores, but in a dis-
tribution of pores representative of the total pore system (Lenormand, 1981), it fol-
lows:

0=0,F(D) [3.3.5-18]
or
8/, = [1 + (hylh )™ [3.3.5-19]

Comparing Eq. [3.3.5-19] with the van Genuchten water retention equation (Eq.
[3.3.5-2]), it follows that the shape parameters of the water retention equation be-
come identical to those used for the particle-size distribution function; that is, m =
M and n = N. Obviously, such shape identity is generally not realistic for field soils
(mn < 1)and is in disagreement with the experimental results shown in Fig. 3.3.5-1.
Even for pure sand soils with mn > 2 the shape identity is not observed. To account
for this problem, Haverkamp and Parlange (1986) suggested correcting the water
retention shape indicator mn by relating it to the dry bulk density. However, before
doing so they had to adapt the water retention equation to the conditions imposed
by the hysteresis model chosen.

When coupling the water retention prediction model with the hysteresis con-
cept of Parlange (1976), the particle-size distribution curve is supposed to be as-
sociated with the main wetting (mw) curve [/,,(6y,,)]. For reasons inherent to the
rational extrapolation technique used by the Parlange hysteresis model the main wet-
ting curve can only be expressed by an equation that does not exhibit an inflection
point. Hence, it excludes use of the van Genuchten water retention equation. Con-
sequently, Haverkamp and Parlange chose a Brooks and Corey type of equation (Eq.
[3.3.5-1]):

Bu/Ope = (Frae ) for by, < hae
Bl = [1 + A= Alhplhig)]  for hye <y <0 [3.3.5-20]

where h,, is the matric head value (L) associated with the air-entry matric head value,
and 8, is the water content on the main wetting curve corresponding with /. (Fig.
3.3.5-3). The wetting branch of /;,(8,y,) for .. < ki, < 0 represents a straight line
passing through the points (8,.,/,.) and (€,0) and is defined by the continuity in slope
at (0,.,h,.). The value of 8, is determined by the straight part of the water reten-
tion curve (Eq. [3.3.5-20]):
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B =e/(1+1) [3.3.5-21]

Before going into detail on the hysteresis module (the second part of the
Haverkamp—Parlange model), estimations of the shape parameter (A) and the tor-
tuosity correction factor (y) are addressed. The calculation of the matric head scale
parameter (h,.) is given in the second part dealing with the hysteresis concept.
When working with functional forms for F(D) and h.(0,,,) the obvious
means for the determination of A would be to use an identification procedure based
on the hypothesis of shape similarity between both functions. However, when

gae ‘93

f (cm’fem’)

Fig. 3.3.5-3. Schematic diagram of the Parlange (1976) hysteresis model with the main wetting curve
(MWC), the main drying curve (MDC), a primary drying curve (PDC), and a primary wetting curve
(PWCQO),
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going from the cumulative particle-size distribution function to the van Genuchten
water retention curve and subsequently to the Brooks and Corey water retention
curve, two difficulties arise. The first one, explained above, concerns the fact that
mn becomes equal to MN when using a linear R(D) relationship. This is obviously
not realistic as even for pure sands this hypothesis is not justified. The second dif-
ficulty concerns the geometrical difference between the two water retention equa-
tions of van Genuchten (Eq. [3.3.5-2]) and Brooks and Corey (Eg. [3.3.5-20]). Even
though both expressions describe the same water retention characteristic, they are
formulated in different ways with different shape parameters (e.g., an apple and a
pear are both fruits but they do not necessarily have the same form). While for large
negative matric head values the van Genuchten water retention equation (Eq.
[3.3.5-2]) behaves like the Brooks and Corey equation (Eq. [3.3.5-20]) with A =
mn, this quasi-identity is only valid for small values of mn (i.e., mn < 0.8). For pure
sands, with mn = 2, the van Genuchten shape indicator (mn) is systematically
smaller than that of the Brooks and Corey (1964) equation. Using the collation of
soils of the GRIZZLY database, Haverkamp et al. (1998) determined the follow-
ing polynomial regression equation (Fig. 3.3.5-4):

A =0.911mn — 0.076(mn)* [3.3.5-22]

with a squared correlation coefficient of 72 =0.9801. Equation [3.3.5-22] was cal-
culated over the interval 0 € mn < 6. Beyond this interval the equation may be in-
adequate.

Because of the two problems, information on shape similarity between the
two functions F(D) and /1,,(8,w) could not be used to its full advantage for the shape
parameter identification procedure. Consequently, Haverkamp and Parlange (1986)
chose to correlate the particle-size shape indicator (MN) directly to the Brooks and
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Fig. 3.3.5-4. The Brooks and Corey shape parameter (M) as a function of the van Genuchten shape in-
dicator (mn) calculated for the 660 soils of the GRIZZLY soil database, together with the regression
line (dashed) given by Eq. [3.3.5-22]; taken from Haverkamp et al. (1998).
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Corey shape parameter (A) by the use of an empirical regression equation with the
dry bulk density (py) as the independent variable:

A = 0.0723MN(p,)>8408 [3.3.5-23]

where the regression parameters were determined over a population of 10 sand soils.
The next step concerns the determination of the tortuosity parameter . Its the-
oretical value can only be calculated for very particular packing arrangements; for
example, for a completely stable tetrahedral particle arrangement ¥ equals 0.112
(Gupta & Larson, 1979b). In the case of field soils, Haverkamp and Parlange
(1986) used a polynomial regression equation expressed as a function of A:

vY=(17.1736 — 4.7043A + 0.1589A%)"! [3.3.5-24]

where the regression parameters were again calculated for a population of 10 sand
soils.

So far only the main wetting curve has been defined (Eq. [3.3.5-20]). The
second part of the Haverkamp—Parlange model deals with the hysteresis link. As
our discussion is focused on the physically based property-transfer models rather
than on the problem of hysteresis (Section 3.3.1), we present here only the devel-
opment of the main drying curve (MDC). For the description of the respective wet-
ting and drying scanning curves we refer the reader to the articles of Parlange (1976)
and Haverkamp and Parlange (1986).

To define the main drying curve (MDC) a similar matric head scale param-
eter is introduced as for the main wetting curve (MWC) (Eq. [3.3.5-20]), namely,
the water entry matric head value /.., which is assumed to be different from #,,.
The value of A, is defined by the straight part of the MWC for 6 = 0, (Fig. 3.3.5-3):

B0 = 0,1 + & — Ay olit )] (3.3.5-25]

Both values of h,. and A, occur for the same water content (8,) and, hence, are
linked by a functional relationship. Considering a uniform-sized particle system,
for example, glass beads, one can derive the relationship (Gupta & Larson, 1979b)
hye =1.84hy,, which is very close to the estimate given earlier by Bouwer (1966},
namely, . = 2h,,.. However, such a constant relationship is physically unrealistic
for natural packing arrangements because one may expect that the water entry ma-
tric head tends to zero when the pore space becomes totally saturated, that is, when
0, tends to the porosity €. Use of the latter condition, together with Eq. [3.3.5-21]
and [3.3.5-25] gives:

Pyeltiae = [(1 + A)/AI[1 - (6/8)] [3.3.5-26]
which fixes the valve of /1, once A, is known.

With the parameter £, defined, the MDC is calculated from the rational ex-
trapolation equation of the Parlange (1976) hysteresis model:

By = haa(@0n/ i) = Oy — Oy for6,4<04  [3.3.5-27]
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which permits the estimation of the MDC starting at a matric head Ay, on the main
wetting curve. The subscript “md” refers to the main drying curve. Substitution of
the main wetting curve (Eq. [3.3.5-20)) into Eq. [3.3.5-27] with A4(6a) = hoe(8y)
gives the following main drying equations:

0,0a/0 = (el )
1+ A= Mgl )V + A — AMigeloe)] ) for g < by,

Opmg = 0 for by <hn <0 [3.3.5-28]

Equations [3.3.5-20] and [3.3.5-28] are the final expressions used to describe the
main wetting and main drying water retention curves.

The last point to solve is the calculation of the air-entry matric head value A,..
Haverkamp and Parlange (1986) used an identification procedure based on the com-
parison between the matric head values on the main wetting curve and main dry-
ing curve calculated for the same water content. Defining Ay, as the matric head
value on the main drying curve corresponding to the water content value 0, (Fig.
3.3.5-3), the combination of Eq. [3.3.5-21], [3.3.5-26], and [3.3.5-28] yields the
implicit equation:

- o1~ 2

mx hmx

=1/
} [3.3.5-29]

which can be easily solved for the ratio Ao/l in an iterative way. This ratio is then
used for the final calculation of the matric head value h,. by combining Eq.
[3.3.5-14], [3.3.5-17], and [3.3.5-13]:

Hae = (0.149D)[(B4e/ ) — 11N (el i) [3.3.5-30]

The minimum input data necessary to operate the Haverkamp-Parlange pre-
diction model are the cumulative particle-size distribution curve, the dry bulk den-
sity or soil porosity, and the water content at natural saturation.

Procedure

1. Fit the cumulative particle-size distribution function F(D), Eq. [3.3.5-14], with
kpg = 1, through the experimental data. This yields values of M and D,. The cor-
responding value of NV is estimated from Eq. [3.3.5-15].

2. Calculate the Books and Corey shape indicator X from Eq. [3.3.5-23] using M
and N determined in Step 1.

3. Calculate the parameter y from Eq. [3.3.5-24] with A determined in Step 2.

4. Determine the water content value 8., from Eq. [3.3.5-21] with £ calculated from
the dry bulk density py, (Eq. [3.3.5-12]). The particle density may be taken as
P =2.65 g cm .,

5. The ratio h,o/huny is computed iteratively from Eq. [3.3.5-29] with a A value de-
termined in Step 2.

6. The matric head value 7, is calculated from Eq. [3.3.5-30] using M, N, D, v,
0,., and h /A, values determined in Steps 1,3, 4, and 5.
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7. Finally the main wetting and drying water retention curves are calculated from
Eq. [3.3.5-20] and [3.3.5-28], respectively.

3.3.5.1.d Comments

Generally speaking, both prediction models presented above are based on the
assertion that the size of the soil particles (textural property) and the dry bulk den-
sity to which they are packed (structural property) are the primary determinants of
the pore-size distribution and, hence, of the water retention curve. Even though this
is not entirely the case, both models correctly predict the shape of many water re-
tention curves. In some way this is not surprising as both models are based on the
experimentally verified hypothesis (Haverkamp et al., 1998) of shape similarity be-
tween the cumulative particle-size distribution curve and the water retention curve.
On the other hand, both models lack precision in the prediction of the soil struc-
tural dependent water content and matric head scale parameters for most field soils.
This shows that the dry bulk density is not the only determinant of the pore-size
distribution and/or water retention curve. Even though the Haverkamp—Parlange
model seems to be less affected by this soil structure dependent scale problem, one
should bear in mind that this model is only valid for the very limited range of field
soils of pure sands that generally are considered as quasi-nonstructured soils. As
far as the Arya—Paris prediction model concerns, Arya et al. (1999) have recently
reformulated the tortuosity parameter ¢ by including the effect of soil structure in
a more satisfying way (details given below),

Of the two prediction models, the Arya—Paris model is definitely the more
user-friendly. Even though the concept of the Haverkamp-Parlange model is sirn-
ple, its description is more complicated to follow because the authors choose to in-
corporate the concept of hysteresis. Moreover, and independent from the question
whether hysteresis effects are important under field conditions or not, the use of the
Arya—Paris model is not restricted to a small group of soil types. On the contrary,
the Haverkamp—Parlange model is only valid for sandy soils in the absence of or-
ganic matter. This certainly explains the fact that the Arya—Paris model is the most
widely used. Aside from these general qualitative remarks, we believe it is useful
to describe in more detail the different conceptual problems inherent in the two mod-
els.

The Arya-Paris Model. A first difficulty of the Arya—Paris model is that it
does not account for trapped air (Arya & Paris, 1981, p. 1029). As the water con-
tent of field soils at natural saturation (8,) is rarely identical to the porosity (g), it
follows that the water content scale parameter is systematically overestimated. This
obviously induces errors in the predicted water content values; these errors are most
visible at the wet end of the water retention curve. As indicated by Arya and Paris
(1982), this effect could be accounted for in the model at the cost of additional soil
information. In a later study, Arya et al. (1999) introduced a correction factor 85/
in front of the sum term in Eq. [3.3.5-11]. However, the presence of trapped air trans-
lates in a disguised way the problem of tortuosity and, consequently, not only af-
fects the water content scale parameter but also the matric head scale parameter of
the water retention curve. From a conceptual point of view this implies that the clas-
sical capillary rise equation (Eq. [3.3.5-10]) should also be adjusted in order to ac-
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count for the effect of trapped air. While the water retention scale parameters have
a dominant effect on the description of vadose zone water movernent (which obvi-
ously is the final goal of our compulsive attempts to predict hydraulic soil charac-
teristics) the problem of trapped air should not be overlooked.

This brings us to the second difficulty of the Arya—Paris model: the defini-
tion of the parameter ¢, which relates the particle size to the pore radius. Arya and
Paris (1981) proposed an average value of o= 1.38, calculated for a limited num-
ber of soils. However, several researchers (e.g., Schuh et al., 1988; Mishra et al,,
1989; Gupta & Ewing, 1992) have suggested that predictions of the water reten-
tion curve could be improved if o is allowed to vary over the range of particle sizes.
As most model users employ the constant o value (i.e., 0. = 1.38), Haverkamp et
al. (1999) have tested the validity of a constant o for more than 1000 soils taken
from the UNSODA database (Leij et al., 1996). For the reported soils, both the water
retention and particle-size distribution curves are available and the value of o can
easily be calculated. Defining the normalized water content as ;% = 0;/6;, a series
of ;* values was chosen at various intervals between zero and unity. Subsequently,
for each soil a value ¢; was calculated for each 6;*. The results, shown in Fig.
3.3.5-5, challenge the validity of a constant c. The values vary not only as a func-
tion of soil type, but also as a function of water content, Neither at the wet nor at
the dry end of the water retention curve is the average value for o = 1.38 satisfied.
From Eq. [3.3.5-8] we observe that the ratio R/D; is proportional to a power func-
tion in n; with an exponent of (1 — ot)/2. Hence, when calculating R;, the uncertainty
in o is amplified by a factor of In(n;)/2. As the number of particles (n;) in the small
size classes is fairly large (i.e., between 106 and 10° according to Table 2 of Arya
& Paris, 1982) the predicted matric head values at the dry end of the water reten-
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Fig. 3.3.5-5. Evaluation of the tortuosity parameter ¢ of the Arya and Paris (1981) model as a function

of 8,/65 calculated for more than 1000 different soils of the UNSODA soil database (Leij et al., 1996)
and the GRIZZLY soil database (Haverkamp et al., 1998).
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Table 3.3.5-1. Regression parameters according to Eq. [3.3.5-31]; taken from Arya et al. (1999).

Textural class a a,

Sand -1415 0.489
Sandy loam —2.353 0.773
Loam —0.644 0.395
Silt loam —1.425 0.353
Clay —1.559 0.305

tion curve are highly sensitive to the precision in o.. This explains the important dis-
crepancies between the calculated and the constant o values observed at the dry end
(Fig. 3.3.5-5). At the very wet end of the water retention curve, the number of par-
ticles (n;) is small (i.e., n; < 5 according to Table 2 of Arya & Paris, 1982) and the
erratic behavior of o (Fig. 3.3.5-5) is probably the result of an overestimation of
the water content scale parameter.

Prompted by different studies on a nonconstant o value (e.g., Schuh et al,
1988; Mishra et al. 1989), Arya et al. (1999) have recently proposed an empirical
method that allows the estimation of the tortuosity parameter o; as a function of the
number of soil particles (n;) and, hence, as a function of water content (8,). The
method uses the principle of shape similarity and was developed by the use of “real”
soil data taken from the UNSODA database (Leij et al., 1996). For five different
soil textural classes, namely, sand, sandy loam, loam, silt loam, and clay (USDA
Soil Survey Laboratory Staff, 1992), about five soils were selected for which the
linear relationships between log(W;/D;*) and log(N;) have been explored (where N;
is the “real” number of soil particles calculated from the UNSODA water retention
data). Arya et al. (1999) established the following regression equation:

o, =1+ {[a, + aslog(W/D)]/log(n;)) [3.3.5-31]

where the parameters a, and a, are empirical regression parameters with different
values for different soil textural classes (Table 3.3.5-1).

For the sake of consistency, we tested the improvement of the new formula-
tion of o on the same soil population as used before for Fig. 3.3.5-5. For each soil
and each water content value (67), the ratio of the predicted (0)q (Eq. [3.3.5-31])
and the best-fit (o), is calculated (Fig. 3.3.5-6). Obviously, when the prediction
is perfect the o ratio should be equal to unity. The results show that the new for-
mulation of o systematically overestimates the best-fit o value with roughly 25 to
75%, which is not a serious improvement with respect to the initial definition with
a constant o (Fig. 3.3.5-5). However, for each particular soil textural class the scat-
ter between the predicted and calculated o values is considerably reduced. This
shows that the principles used for the new formulation of o are basically sound, but
that the regression parameters a, and a,, calculated over a small soil population of
roughly five soils, are not representative for the soils taken from the UNSODA data-
base (Leij et al., 1996) and the GRIZZLY soil database (Haverkamp et al., 1998).
It evokes the unavoidable problem of transportability of statistically determined re-
gression parameters. For those soils that give values of the o ratio clearly situated
outside the bands, that is, (0)pea/(06)5; > 2) established for the five soil textural
classes (Fig. 3.3.5-6), the quality of soil data may be questioned. Apart from the
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Fig. 3.3.5-6. Evaluation of the predicted (0)peq and the best-fit (o) ratio as a function of 8,/85 cal-
culated for more than 1000 different soils of the UNSODA soil database (Leij et al.. 1996) and the
GRIZZLY soil database (Haverkamp et al., 1998).

fact that measured water retention curves are most probably affected by measure-
ment errors, they are also quite often influenced by hysteresis effects that are not
always recognized as such (Haverkamp et al., 2002).

This brings us to the third difficulty of the Arya—Paris model: the problem of
hysteresis. As the cumulative particle-size distribution is unique for a given soil,
only one associated water retention curve can be predicted, either the main wetting
curve or the main drying curve. To pass from one main curve to the other and/or
along scanning curves, the water retention prediction model should theoretically
be coupled with a hysteresis model that does not require any supplementary infor-
mation. Although the discrete equations used by the Arya—Paris model were not for-
imulated to facilitate such coupling, it is feasible to do so. Moreover, it would im-
pose the use of an ¢ value (constant or variable) calibrated on the correct water
retention data.

The last remark concerns a slightly more vicious problem related to the non-
linear relationship between pore radius and particle size (Eq. [3.3.5-8]). When con-
sidering a natural soil sample, we define the total pore volume (L?) of the sample
by Vp, and the total solid particle volume by Vs, (L. Both volumes are related by
the apparent porosity (€) introduced above:

Vp Vs, =E/(1 —F) [3.3.5-32]
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When expressing the partial porosity (g;) for each particular mean pore radius (R))
and associated particle diameter (D)), its value is obviously variable and different
trom the apparent porosity. Using the hypothesis of Arya and Paris (1981), which
considers the partial porosity constant over the soil sample (i.e., &;= €), we have:

dVp/dVs = Vp/Vs, =€/(1 —-€)=¢€ [3.3.5-33]

where dVp is the pore volume (L.?) assigned to pores having a radius between R and
R + dR, and dVs is the solid particle volume (L*) assigned to particles having an
associated particle diameter between D and D + dD. The direct consequence of the
constant partial porosity hypothesis (Eq. [3.3.5-33]) is that the relative pore frac-
tion (dVp/Vp,) and the relative particle fraction (dVs/Vs,) are equal. Hence, the cu-
mulative pore fraction can be set equal to the cumulative distribution of particle
weight (F), such as assumed by the prediction models of both Arya and Paris (1981)
and Haverkamp and Parlange (1986). However, the validity of Eq. [3.3.5-33] is also
conditioned by the relation R(D). The identity of Eq. [3.3.5-33] is only justified
when R is directly proportional to D such as suggested by Eq. [3.3.5-16] and used
in the Haverkamp-Parlange model. On the contrary, when the relation R(D) is not
linear (e.g., a power function such as used by the Arya—Paris model) the postulate
of Eq. [3.3.5-33] becomes erroneous; that is, dVp/Vp, # dVs/Vs, and the partial
porosity (&) may not be set constant any more. In spite of this compatibility prob-
lem, the Arya—Paris model uses the hypothesis of constant partial porosity together
with a non linear R(D) relationship. '

The Haverkamp-Parlange Model. The first comment made regarding the
Arya—Paris model also applies to the Haverkamp-Parlange model; the matric head
scale parameter is not corrected for trapped air.

The second drawback of the model is the use of a linear R(D) relationship.
As shown above, this hypothesis leads to the unrealistic condition of shape iden-
tity (instead of shape similarity) between the cumulative particle-size distribution
function and the water retention curve. Even though the authors have overcome this
problem by introducing, a posteriori, a regression equation relating both the shape
indicators of F(D) and hy,(8p,,,) as a function of dry bulk density (Eq. [3.3.5-23]),
they compromised, by doing so, on the consistency criterion and introduced em-
piricism. The direct consequence of choosing a linear relationship between R and
D is that the model can only be applied to pure sands, which covers a very limited
range of field soils. The parameter v, used to equate R as a function of D, is com-
parable to ¢ of the Arya—Paris (1981) model. The 7y value is considered constant
for a given soil and is calculated empirically (Eq. [3.3.5-24]). Even though it was
shown for the Arya—Paris model that these assumptions led to serious errors in the
prediction of the o parameter, the problem is less crucial for the Haverkamp-Par-
lange model, as it is only applicable to pure sand soils.

The definite positive aspect of the Haverkamp—Parlange (1986) model is the
fact that the authors coupled the water retention prediction model with a hystere-
sis model. Unfortunately, the hysteresis concept obliged the authors to choose dif-
ferent type-equations for F(D) and #,,(8,,,,,), which, together with the postulate on
a linear R(D) relationship, made it impossible to take full advantage of the shape
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similarity hypothesis. To overcome the problem the authors had to introduce em-
piricism (see remark above), which to some extent compromised the advantage of
using the coupled hysteresis model. Moreover, the introduction of the hysteresis con-
cept complicated the model description, hence making it more difficult to follow
and less user-friendly.

In conclusion, in spite of the progress made with these prediction models and
in our understanding of the complexity of pore structures, there is still a need for a
physically based hysteresis-coupled prediction model that allows for an accurate
estimation of the soil characteristic shape and scale parameters without empirical
calibration. This need is particularly great in modeling vadose zone transfer
processes at large scales. However, one should not overlook the danger inherent in
such types of models. Owing to their simplicity, one may believe that they closely
approximate reality, the “actual” pore structure. In fact, nothing could be farther from
the truth.

3.3.5.2 Property Transfer from Particle and Aggregate Size
to Water Retention

JOHN R. NIMMO, U.S. Geological Survey, Menlo Park, California

3.3.5.2.a Principles

As discussed in the previous section, it is frequently desirable to predict soil water
retention from more easily measured properties. This section addresses the situa-
tion where the available measured data include particle-size distributions, but
where this alone does not lead to an adequate prediction. For many soils, macrop-
ores and other structural features significantly influence the hydraulic properties.
Thus, water retention curves may not be well predicted on the basis of particle-size
distributions alone. A model with assumptions that relate the aggregate-size dis-
tribution to these features and their effect on retention can produce better predic-
tions. The model of Nimmo (1997) considers the volumetric water content (0) as
the sum of two components, one textural (8)) and the other structural (6,):

B(y) = 8,(y) = B.(y) [3.3.5-34]

where s is the pressure potential (Pa). The porosity (¢) is similarly divided into com-
ponents for texture and structure:

=0+ 0 [3.3.5-35]

Figure 3.3.5-7 shows an example of this partitioning. To estimate 6,(y), the
Arya—Paris (1981) model can be applied using particle-size distribution (Section
3.3.5.1), but with an assumed value of ¢, instead of ¢. For the texture-based poros-
ity, ¢, the value 0.3 is used for all media (Nimmo, 1997). This value is chosen be-
cause it is the approximate porosity for a wide range of media with a nearly ran-
dom structure. The estimation of 8,(y) requires additional data. Gupta and Ewing
(1992) and Rieu and Sposito (1991a) have used aggregate data for similar reten-
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Fig. 3.3.5-7. Separation of a retention curve into textural and structural components as illustrated for a
core sample with a silt loam structure.

tion predictions. Soil aggregates can be related to large pores that contribute to ¢
and 0,(y). In effect, this is like a texture-based model that is based on aggregate
sizes rather than particle sizes.

To predict 8,(y) from a size distribution, it is necessary to relate aggregate
size to pore size, and to relate pore size to pore opening or effective capillary ra-
dius. Relating aggregate size to pore size can be done analogously to the capillary
theory relation of particle size to pore size for a randomly structured medium, and
modified for the distinctive features of interaggregate as opposed to intraaggregate
pores. Each interaggregate pore is taken to have a volume proportional to an ag-
gregate volume so the volumes scale as

Vpore/Vage = 04/(1 — &g) =m; [3.3.5-36]

where 1, is the structural void ratio. If both v, and v, vary as the cube of the ef-
fective radii of the pore and grain, then

rpore/ragg = nslﬂ [3.3.5-37]

Capillary theory relates the size of the pore opening r to the matric pressure
at which the pore drains:

r=—(Chy) [3.3.5-38]

where C equals about 0.13 mm kPa™' for small contact angles and a surface ten-
sion 10% less than that of pure water.

In general the pore opening is smaller than the main body of the pore, which
is represented in the model by a factor § (> 1), which equals the ratio of pore body
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radius/pore opening radius for pores defined by adjacent basic particles, not ag-
gregates, Typically, p would have a value of 2 or more (Nimmo, 1997). For aran-
domly structured medium a value of 2.2 is reasonable, and the model assumes this
value for intraaggregate pores.

Aggregates generally fit together better than individual particles because
they form in situ and also because they are more malleable. The model accounts
for this with the additional assumption that the lognormal standard deviation (G)
of the aggregate-size distribution can serve as an index of the orderliness of the
medium, indicative of the width (per unit length) of interaggregate pores. Defined
in terms of logarithms, ¢ ranges from 0 to 1. A value of 0 corresponds to perfectly
tight aggregates and 1 to a degree of looseness implying randomly structured
media. This is algebraically incorporated into the model by taking the ratio of
pore/aggregate radius equal to a factor of ¢ times 1", as opposed to equating it
directly to 1", as in Eg. [3.3.5-37). Combining these assumptions with Eq.
[3.3.5-38] gives a relation of aggregate size to the value of y on a drying curve:

Fage(W) = —~(CPY(o ) [3.3.5-39]

The model uses a fit of Gardner’s (1956) lognormal distribution to the aggregate-
size distribution:

—(logryge — logrm)® } (3.3.5-40]

1
1087 00) = —=———= €X
fllograge) V2nlogo 4 2(logo)?

where fis the relative frequency of occurrence and ry, is the geometric mean radius.
The lognormal standard deviation &, which is used in Eq. [3.3.5-39] and elsewhere,
is determined in this lognormal fitting procedure. Incorporating the fit of Eq.
[3.3.5-40] and using the normalization described by Nimmo (1997), the model’s
basic formula is

b, logr, —(log rye — log )
0,(y) = [ ex [ ez . ]d log ooy [3.3.5-41
W= Tog o = 2(log 0)? e | J

The modeled 8,(y) thus has the form of a lognormal distribution, as has been used
in ofther models of soil water retention, for example by Kosugi (1994) and Kosugi
and Hopmans (1998). Nimmo (1997) gives additional details of the model’s deri-
vation.

An alternative model, similarly based on dual-porosity concepts, and for some
media predicting water retention about equally well, uses the Arya—Paris model ap-
plied to the aggregate-size distribution (with porosity o) as well as to the particle-
size distribution (Nimmo, 1997). This is very similar to the Gupta-Ewing (1992)
model, but it uses the assumed ¢, value to partition the pore space and, therefore,
does not require aggregate density data. [t may produce essentially the same results,
but with the advantage of a lesser data requirement, which widens the available pos-
sibilities for testing and application,



780 CHAPTER 3

3.3.5.2.b Procedure

For the case of most interest, in which no retention data are available, required
inputs to the model are the measured porosity (Section 2.3), particle-size distribu-
tion (Section 2.3), and aggregate-size distribution (Section 2.6). Steps involved are:

1. Apply the Arya—Paris model to the particle-size data, with porosity equaling the
textural porosity of 0.3 and the Arya—Paris o. parameter equaling 1.37. The fol-
low-up comment of Arya and Paris (1982) may be helpful in setting up the cal-
culations.

2. Fit the lognormal distribution to the aggregate-size data to obtain values of the
parameters r,, and 6. Commercial software packages for statistical applications
usually can do this easily. Alternatively, the graphical method used by Gardner
(1956) is adequate and practical when data are few.

3. Compute 8,(y) using Eq. [3.3.5-41] and [3.3.5-39], with ¢, taken as 0.3 less than
the measured ¢. Equation [3.3.5-39] converts from r,,, on the right side of Eq.
[3.3.5—41] to y on the left side.

4. Add 6,(y) and 8,(y) to predict 8(y).

3.3.5.2.¢c Comments

Testing this model with data from two sources (Shakofsky, 1995; data of Bous-
nina cited by Rieu & Sposito, 1991b), Nimmo (1997) found it to fit measured re-
tention data much better than does the texture-based Arya—Paris model alone. For
soils that tend to be weakly aggregated and randomly structured, this model is less
appropriate, but these are the sorts of media whose water retention relation can often
be reasonably predicted with a texture-based model like the Arya—Paris model. For
soils with significant aggregation, the texture-based models often give poor pre-
dictions, in large part because the greater presence of very fine (e.g., clay) parti-
cles promotes aggregation and the formation of large pores, whereas the texture-
based models generally assume that the very fine particles are associated only with
small pores. Thus, for soils in which the structure is far from random, it is likely to
be worthwhile to do the measurements of aggregate size and apply a model that con-
siders both texture and structure, for a better representation of 6(y).

A potential concern arises from the fact that the measurement of aggregate-
size distribution is not well standardized and the data are generally less reliable than
for particle-size measurement. In terms of effect on the actual form of the predicted
retention curve, the model is less sensitive to the values of 7, and ¢ than to other
input values.

For use with wetting rather than drying curves, this model must be modified
or supplemented. A wetting curve might be generated by letting  equal 1 instead
of 2.2 (Nimmo, 1997). Alternatively, it could be predicted using a separate hysteresis
model, though most such models would require additional types of data.

Improvements in fit are likely to be possible by adjusting the values 0.3 and
2.2 used for ¢, and B. Although the model may have a nonnegligible sensitivity to
these parameters, these designated values have a physical interpretation that makes
them reasonable choices for a large number of soils, and there is a practical ad-
vantage in not having to optimize them when the model is applied.
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