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The flower of Kalmia latifolia L. employs a catapult mechanism that flings its pollen to
considerable distances. Physicist Lyman J. Briggs investigated this phenomenon in the 1950s
after retiring as longtime director of the National Bureau of Standards, attempting to
explain how hydromechanical effects inside the flower’s stamen could make it possible.
Briggs’s unfinished manuscript implies that liquid under negative pressure generates stress,
which, superimposed on the stress generated from the flower’s growth habit, results in force
adequate to propel the pollen as observed. With new data and biophysical understanding to
supplement Briggs’s experimental results and research notes, we show that his postulated
negative-pressure mechanism did not play the exclusive and crucial role that he credited to
it, though his revisited investigation sheds light on various related processes. Important
issues concerning the development and reproductive function of Kalmia flowers remain
unresolved, highlighting the need for further biophysical advances.
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Introduction

Some biomechanical processes depart so far from our ordinary observations of

physical phenomena that their workings are mysterious to experts; like an unex-

plained magician’s trick, they appear to violate natural laws. The mechanism by

which Kalmia latifolia abruptly flings its pollen into the air in response to the
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proximity of pollen-carrying insects is one such case. This phenomenon captured

the attention of the noted American physicist Lyman J. Briggs (1874–1963) after

he retired from his 1932–1945 tenure as director of the National Bureau of

Standards (NBS),* the United States’ ultimate authority on physical measure-

ments. Over several years in the 1950s, Briggs conducted experiments on Kalmia

flowers and tested hypothetical explanations, leaving handwritten notes and an

unfinished manuscript now filed at the (US) National Archives. Our interest in the

subject of pollen discharge by Kalmia stemmed from an earlier, broad look at

Briggs’s life and scientific career.1 In this paper, we report our analysis of Briggs’s

investigation and results of our own follow-up experiments aimed at explaining

how Kalmia disperses its pollen. The topic affords an interesting exploration of the

physics of interacting bulk fluids and solids in a biological system.

Rapid movements in plants have been a subject of continuing botanical and

physical interest. Recent scientific investigations have focused on the hydraulics

and mechanics of such movements.2 King and Buchman investigated the impor-

tance to pollen dispersal of vibrational resonances in Rhododendron stamens.3

Flowers of the genus Kalmia (figure 1) display a catapult release of pollen that has

long attracted attention.** Noted American botanist William J. Beal, a student of

Asa Gray at Harvard, described the release of pollen by Kalmia as follows:

When the anthers are liberated from the pockets in the corolla, the stamens

suddenly straighten and throw jets of pollen often a foot or more, ‘‘acting,’’ as

Professor Gray used to say, ‘‘like a boy’s pea-shooter.’’4

Investigations like these are important as case studies of sudden, rapid, macro-

scopic motion of plant tissues, a response employed by many species for specific

functions, and of the interactions among plant structural elements, internal fluid

state, and environmental influences in determining biological function.

Pollen Distribution and Rapid Motion of Flowering Plants

Plants have no muscles to propel movement. Those that need substantial move-

ment, for example for a flower to face the sun as it moves in the sky, must do so

through mechanical action of tissues and cells. Most such movements are slow,

acting over a few hours. Some are faster; for example, the stamens and stigmatal

lobes of some flowers bend in a matter of seconds when touched by insects.5 But

fraction-of-a-second movements of flower parts are rare and are sometimes

associated with pollen release by an explosive or catapult means.6

* After 1988, the National Institute of Standards and Technology (NIST).
** Figure 2 defines ‘‘corolla,’’ ‘‘stamen,’’ and other botanical terms. An anther is the end
portion of the stamen, which contains the pollen. Stamens, each of which is the active
member of a catapult, are visible in figure 1 as curved filaments about 10 mm in length with
their basal ends attached to the center of the flower.
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Kalmia is a North American genus of shrubs within the heath family (Erica-

ceae) that occurs from Alaska to Cuba. It is classified within the large subfamily

Ericoideae, along with diverse genera including Rhododendron and Erica.7 The

most familiar of the seven or eight recognized species within the genus is Kalmia

latifolia, commonly known as mountain laurel and widely distributed in eastern

North America. Because of its beauty, mountain laurel was proposed as the

national flower of the United States; it is the state flower of Connecticut and

Pennsylvania.8

The small flowers with five petals (about 20 mm diameter when open) occur in

clusters. The distinctive, pollen-discharge mechanism of the ten stamens in Kalmia

(figures 1 and 3) has been described by Ebinger:

Near the middle of the corolla are 10 pockets forming small lobes on each ridge

of the flower bud. … Just before the bud opens, the elongating filaments push

the anther upward into these pockets. As the corolla opens, the elastic filaments

bend backward under tension, and the anthers are held in the pockets and

carried down and outward. When the flower is disturbed by a large insect, one

or more of the anthers is released. When this occurs, the tension of the elastic

filament is strong enough to throw the pollen [7.5–15 cm] from the flower.9

Fig. 1. Flower of Kalmia latifolia. The 10 pockets in which the upper portions of the anthers are

lodged are located approximately midway between the base and the free edge of the corolla. The

paperclip is 2.5 cm long. Credit: E. R. Landa.
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Developing in the bud, the filaments, which initially curve slightly inward, start to

turn outward and then upward (figure 3a) so that the upper end of each anther fits

into one of the corolla pockets (figure 3b), a position achieved before the flower

opens. When the flower does open, the anthers remain in the pockets of the

saucer-shaped corolla and the filaments assume a flattened, elongated S-shape,

except at the top. Mechanically, the stamen acts as a cantilever spring, fixed at the

basal end, with the stamens bent away from what would be their free or unstressed

shape, as can be seen in figure 1. Before flinging, with the distal end in the corolla

pocket, a restraining force exerts bending stress.10 Stiffness of the corolla, essential

to generate this force, is characteristic of Kalmia flowers. The corolla can be

described as a distinct firm bowl; it is commonly observed intact on the ground in

mountain laurel groves after the blooming period. When the anther is yanked out

of its pocket by an insect accidentally tugging on the filament, the stress already

established within the filament makes it rapidly bend away from the petal toward

the center of the flower, immediately flinging the pollen, some of which may land

on the pollinator’s body or the stigma. Some observers have reported that the

stamen can be spontaneously released towards the end of floral life, while others

have noted that when the flowers are protected by netting to exclude insects, none

of the stamens are released (the anthers remain in the pockets and the filaments

lose their elasticity) and no seed is produced.11

Fig. 2. Diagram of an idealized flower, with major components labeled.
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Briggs and his Kalmia Investigation

Briggs’s career began with his employment at the US Department of Agriculture

(USDA) in 1896.12 At age twenty-three, he published an explanation of the roles

of surface tension and gravity in determining the state of static soil moisture.13

These concepts likely helped to underpin the work of his junior colleague Edgar

Buckingham, who in 1907 introduced the concept of matric potential (the com-

ponent of energy that arises from the water’s interaction with the rigid soil matrix)

in soil-water flow.14 Around this same time, Briggs and coworkers developed the

soil moisture-equivalent concept, whose measurement involving negative (less

than atmospheric) pressure produced by outflow of water from a sample in cen-

trifuge. In the next decade, Briggs’s multi-state experiments with H. L. Shantz on

water use efficiencies showed that in a climate like that of the Great Plains, plants

use water more productively in the cooler north than in the warmer south. These

experiments have resonance today in the economics of agricultural production in

various climate regions of the United States and elsewhere.

During World War I, Briggs transferred to the NBS to work on defense-related

topics. These investigations included the design and construction of a wind tunnel

with air speeds approaching the speed of sound for research on improved designs

for propellers. His work for the US Navy included the development of a ‘‘stable

zenith’’ device, a gyroscopic instrument for maintaining an artificial horizon to aid

Fig. 3. Buds of Kalmia latifolia. (a) Young bud showing early corolla pockets with stamens still

essentially upright. (b) Older bud showing stamens bending toward the corolla pockets. Scale

bars = 1 mm. Figure abbreviations: cp, corolla pocket; sy, style. Source: Hermann and Palser (ref.

29), with permission from American Journal of Botany.
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large guns on naval vessels to direct their fire. The device designed by Briggs and

coworkers was tested aboard the battleships USS Arizona and USS Mississippi in

October 1918 and later was deployed to the entire battleship fleet.

Following World War I, Briggs continued his research and administrative duties

at NBS, rising to its directorship in 1933. Among his contributions to the American

scientific community was his leadership, beginning in 1939, of a top-secret com-

mittee that evolved into the Manhattan Project to develop an atomic bomb. Briggs

retired as NBS director in 1945 and returned to laboratory studies. A life-long

baseball fan, at age eighty-four Briggs studied the speed, spin, and deflection of the

curve ball, aided by manager Cookie Lavagetto and the pitching staff of the

Washington Senators; he published these findings in the American Journal of

Physics.15

Briggs’s major thrust after 1945, however, was a return to the subject of neg-

ative pressures. The central issue he explored was how great a magnitude of

negative pressure a liquid can sustain. The basic method of these studies was to

apply force that tends to pull apart a continuum of liquid in a tube, increasing the

force to decrease pressure within the liquid. When intermolecular forces are suf-

ficiently exceeded somewhere, cavitation occurs: a bubble of vapor is created that

immediately expands and breaks the continuity of the liquid mass. Briggs used a

centrifuge with an open-ended tube of liquid, horizontal in the plane of rotation

and centered on the axis of rotation. Centrifugal force would pull liquid outward

toward both ends, creating a calculable negative pressure at the center. Briggs

found that, with adequate attention to experimental details and cleanliness, the

liquid could sustain extreme negative pressures without cavitation. For liquid

water, he established negative pressures as great as 277 atmospheres. Between

1949 and 1957, Briggs published eight sole-author journal articles on negative

pressure in Science, the Journal of Applied Physics, and the Journal of Chemical

Physics. This work is still cited in the modern plant physiology literature on the

ascent of water in xylem (a plant tissue) as supportive of the cohesion theory;

proponents of the theory use the high tensile strength of water found by Briggs to

explain how water can reach the top of tall trees.16

The curious circumstance of a soil physicist assuming a leadership role in the

Manhattan Project initially attracted our attention to Briggs more than a decade

ago.12 The latter role was associated with his position as the highest-ranking

physical scientist in the federal government, giving him a status akin to the pres-

ent-day presidential science advisor. In speaking with people over the years about

Briggs, it has been interesting to find that each science community knows Briggs

for a different reason, and each is typically unaware of his other work—the

aerodynamics community knows his wind tunnel work, but the soils community

knows his moisture retention studies. His role in the science-of-baseball commu-

nity is, of course, one that crosses many boundaries. The day in 1958 that Briggs

came to Griffith Stadium is well remembered by Washington Senators pitcher

Russ Kemmerer:
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I was with the Senators at that time and I do remember all the fuss around the

clubhouse because there were men attempting a science project that would

prove what most baseball players took for granted, the thrown baseball does

curve. Camilo Pascual had the best curve ball on the Senators, in fact it was the

best in the American League, perhaps all of baseball. [Pedro] Ramos, on the

other hand, had trouble making it bend. Lavagetto choose the two Cubans for

the experiment. As a result the rest of the pitching staff became playful par-

ticipants sticking in our two-bits whenever possible. I am not certain, but since

the Senators were at home and since Ramos and Pascual did take part my

participation in the event may have been limited simply because as a starting

pitcher I was most likely scheduled to pitch that day or the next and Cookie

would not have had us throw prior to our regular rotation.17

After Briggs’s six decades of working with the precise physical character of

hydraulic and mechanical processes, it is not surprising that he would be fascinated

by the mechanism causing the mysteriously rapid and sudden motion of the Kal-

mia stamen dispersing pollen. He likely observed a prominent stand of Kalmia

latifolia in Rock Creek Park in Washington, DC, near his home and workplace.

The pollen-flinging process could easily be seen as less akin to the typical dynamics

of plants than to those of human-engineered mechanical devices like catapults.

One can see how this comparability might well have resonated with Briggs’s long

experience exploring technological devices, including many employing projectiles

or explosives, for example the naval guns of World War I and nuclear bombs

during World War II. The observation of similar dynamics in the living tissues of a

flower would naturally inspire him to investigate this process.

Because Briggs was the former director of a federal agency, after his death his

papers were transferred to the (US) National Archives and Records Adminis-

tration (NARA). These materials include a loose-leaf binder labeled ‘‘negative

pressure as an active agent in throwing pollen by Mountain Laurel (Kalmia lati-

folia).’’ The material therein covers the period 1954–1958 and includes laboratory

notes by Briggs, notes to Briggs by Dr. J. M. Frankland, a specialist in solid

mechanics at NBS, and ten handwritten pages by Briggs of a May 1958 manuscript

draft.18 These archival materials inform us concerning what Briggs did and

hypothesized about this phenomenon.19

Briggs directly explored the mechanisms responsible for the surprisingly sudden

and forceful ejection of pollen from the Kalmia flower. Elements required for a

catapult mechanism include a beam capable of maintaining a strong bending

stress, a device for holding that beam in a stressed position, and a means of abrupt

release so the stress can generate a rapid flinging motion. In the Kalmia flower, the

stamen’s thin filament is the beam, the pockets in the corolla hold it bent, and an

insect in motion triggers the release. But other answers are not obvious, including

(1) what processes act to generate the bending stress and (2) what properties of the

filament allow it to achieve and maintain the required stress. In a mousetrap, by
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analogy, the bending stress is created by forcibly bending the wire hammer from

its original position to its set position. Properties needed by a filament, mousetrap,

or other catapult-like device include stiffness adequate to establish substantial

stress with a single bend through a given arc, elastic limit great enough to maintain

the bend without losing the stress through deformation, and strength sufficient to

withstand the bending stress without rupture. Briggs’s work relates to these

unsolved issues, with emphasis on the properties of the filament.

Given that Briggs was a world expert with sixty years of experience on the

behavior of liquids under negative pressure, it is also not surprising that he

hypothesized a major role for negative pressure within the filament’s tissue in

generating and maintaining the required stress. Briggs had formulated a hypoth-

esis, unfortunately not explicitly stated in his notes, that some volume of liquid at

negative pressure within the filament was essential to the mechanical process of

triggered, rapid-motion flinging. The earliest indication of such a hypothesis

appears in Briggs’s lab notes of June 1, 1954. Briggs headed the page: ‘‘Differential

negative pressures in the stamens of Kalmia latifolia.’’ He had apparently already

begun experiments, noting that attempts to release a single stamen and measure

the stress on it were proving very difficult due to the twisting of stamens. From his

notes and unfinished manuscript, we infer that his main objective was to establish

that mechanisms not involving negative pressure were inadequate to generate and

maintain the required bending stress.

A compressive stress generated by negative pressure in a longitudinal liquid-

filled chamber inside the filament could alter its elastic properties, perhaps

allowing it to bend further or spring back with greater force.* Such alterations of

the tissue’s properties may be necessary to accommodate the unusually high stress

and strain required. Another hypothesis is that an internal negative pressure could

generate a bending stress if the filament is asymmetric in the right way; a stress

tending to curve the filament adaxially (opposite to its pre-flung curvature) could

be generated by negative pressure if material of the adaxial side is thinner or

softer. (The terms adaxial, meaning toward the flower’s axis, and abaxial, meaning

away from the axis, occur frequently in describing the characteristics and motion

of the stamen.)

Briggs’s notes describe an indirect, two-stage approach. First he measured

stress and strain in the active filament. He undertook to measure the force exerted

by a bent, stressed filament that had not yet flung and estimate its bending

moment, the product of the transverse force applied by the petal to the bent

stamen and the distance of the stamen’s anchored base to its pinned anther. The

bending moment is a measure of the internal stress induced by a given force

applied at a given distance from the point where the filament is held fixed. Then

* Quantitatively, these properties are represented by the elastic limit, which indicates how
much bending can be sustained without damaging the ability to spring back, and Young’s
modulus, the amount of bending force associated with a given degree of bend.
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Briggs explored the possibility that these values, which allow the filament of the

Kalmia stamen to spring forcefully enough to drive pollen out of the anther, could

reside in the filament’s material in the absence of negative pressure in the internal

liquid. In Briggs’s words, he was testing ‘‘the assumption that the pronounced

elastic property of the filament arises from stretched fibers.’’ If the required stress

and strain were incompatible with the elastic properties of the filament material,

then something else was required, quite likely a hydromechanical role of internal

fluid pressure.

Briggs performed experiments on open flowers, freshly collected on the NBS

campus in northwest Washington, DC, to determine the dimensions and

mechanical stresses of the stamens. The small size of the flower (stamens are about

5–10 mm long) made the measurements a challenge. Additionally, the time win-

dow each year for obtaining open flowers with pinned stamens was narrow, a few

weeks in late May to early June at that location.

Figure 4, taken directly from the archived materials, diagrams two positions of

a stamen’s filament: (1) curving abaxially before flinging when it is pinned in its

corolla pocket and (2) curving adaxially after flinging that has taken it through a

270� rotation. Thus, position (2) is the free shape of the filament when no external

stresses act on it.

What Briggs measured is the force exerted by the corolla to keep the stamen

bent into position 1. Early attempts involved the release of a single stamen from its

Fig. 4. Sketch by J. M. Frankland showing the initial and final positions of the Kalmia stamen

associated with its triggering and subsequent pollen release. Source: ref. 19.
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pocket and constraining its escape by a hook applied near its tip, but the filament

always twisted away. Briggs settled on a method that involved cutting a small

section of the corolla containing several stamens to separate it from the remainder

of the corolla. In so doing, he carefully left the anthers in their pockets so that the

cut section was suspended by the stamens in nearly its original position. The

central component of the flower, the gynoecium (figure 2), was apparently

removed at the start of the procedure, probably to accommodate the greater-than-

90� arc sometimes seen by Briggs with the released stamen. The weight of the cut

section was not sufficient to offset the bending stress exerted by the stamens, so

that the corolla section would be lifted a short distance upward and inward

towards the central axis of the flower. Early trials looked at cut sections bearing

6–10 pockets; eventually a section with 2 stamens was deemed optimal. Cutting the

corolla section was a tricky procedure involving a specially improvised holder for

the flower and the use of a hand rest, razor blades, and manicure scissors. Briggs’s

lab notes of May 26, 1958 (the last entry we have) describe making the final cut to

release the section: ‘‘This is ticklish. Many casualties.’’

Prior to cutting the corolla free, a wire hook was attached to the corolla

between and below two adjacent pockets. Sections of fine chain with known weight

per unit length were attached to the hook (sections of the chain and the hook

Briggs used are preserved at NARA). The initial load was selected, based on

experience, to hold the section near the pre-release ‘‘equilibrium’’ position. The

chain was attached to a mini-windlass of design similar to Chainomatic analytical

balances common in laboratories of the 1950s.20 Additional weighted chain was

dispensed until the cut corolla section returned to its initial position in the intact

corolla. The combined weight of the hook, chain, and fresh corolla section (the

latter weighed at end of run) was used to calculate the upward force exerted by the

still-attached stamens.

The force required to maintain a filament in the bent, stressed configuration it

has when pinned, based on nine measurements, was 280 ± 30 micronewton,

equivalent to about one-third the weight of a bee. The angular rotation of the tip

of the filament in going from pinned to released position was as much as 270�.*

Frankland used Briggs’s data to calculate conditions and properties related to

bending. For the bent stamen of Kalmia, he calculated the bending moment to be

2.0 9 10–6 newton meter, the bending stress 0.12 megapascal (best value), and the

extreme fiber strain 0.047. Briggs interpreted these results with respect to plausible

alternatives for the physical mechanisms responsible.

To estimate the maximum flexure possible without negative pressure aug-

mentation, Briggs looked to measurements of other botanical materials. His line of

* Briggs measured the filament length to be 11 mm, the straight-line distance between the
fixed and pinned ends of the bent filament 7 mm, the filament width 0.44 mm at midpoint
and 0.56 mm near the basal end, and thickness (from abaxial to adaxial edge) 0.25 mm. The
pinned filament was bent abaxially 90�; some time after flinging it was bent adaxially 180�.
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reasoning was that if botanical materials in general were insufficiently elastic to

sustain the flexure he had measured in the filament, then an additional influence,

specifically negative pressure, was needed. He readily found data for wood and

took it as a comparative standard. Using data for six different species of green pine

from a mechanical engineering handbook, he took the average strain at elastic

limit, 0.32%.21 The data were typical for softwood in a green state and differ

modestly from properties of other types and conditions of harvested wood.22 The

4.7% value for Kalmia was fifteen times greater, suggesting to Briggs that stretched

fibers of the filament did indeed require the additional effect of negative pressure.

Surprisingly, nothing in the archived materials suggests that Briggs or Frankland

calculated Young’s modulus for the filament material, even though they had

measurements for the quantities necessary to do so. Specifically, the ratio of their

extreme fiber stress to extreme fiber strain gives a value of 2.5 megapascal. This

value is comparable to the 1–10 megapascal range that Gardner and Ehlig mea-

sured for leaves of four species, perpendicular to the plane of the leaf.23

In undated notes written after Briggs’s experiments of May–June 1956 and

before his partial manuscript of May 1958, Frankland stated:

It is plausible that the tubular section of the stamen flattens during the bending

and that this reduces the ranges of strain actually experienced by the extreme

fibers. Should this happen, then a compressible fluid inside the stamen can do

work, since the flattening of the section is accompanied by a reduction in vol-

ume. For positive work to be done, it must be at less than atmospheric pressure.

Motivated by the hypothesis that the calculated elongation of the extreme fiber is

unreasonably large for a botanical tissue, Frankland is suggesting the actual strain

may be reduced by contraction of what he calls the tubular section of the stamen.*

Negative pressure of the liquid within the stamen would aid in this process. Plant

physiological processes, for example evaporation through pores or alteration of

the restriction controlling liquid flow into the stamen, could vary the pressure.

Because pressure represents energy density, these processes could increase the

energy available to do work in flinging pollen.

Earlier, on October 15, 1955, Briggs wrote: ‘‘Could the negative pressure be

computed from the work done by the stamen in throwing the mass of pollen a

measured distance?’’ The accompanying diagram of an arc of a measured height

and width suggests he was considering using a measured trajectory. With addi-

tional knowledge of the pollen mass, he could have computed its kinetic energy

and equated that to work done by (and hence energy stored within) the filament.

He apparently left no record concerning any attempts to measure the mass of the

ejected pollen or other quantities needed for this calculation, including other

* Unfortunately, this conception of the stamen having a circular cross section and a hollow
chamber along its axis does not correspond well with the actual stamen anatomy, as
described below.
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assumptions that would have been necessary to infer the negative pressure once

the work was known (such as the unknown portion of the stored energy that would

go to dissipative losses). Clearly, however, Briggs and Frankland were thinking

that because the calculated material properties seemed unreasonable without

some additional mechanism taking up some of the apparent extreme fiber strain,

internal fluid at negative pressure could provide that mechanism.

Briggs’s 1958 manuscript begins with a description of the flower’s anatomy and

its unique pollen-release mechanism. The next section is headed ‘‘Curvature not

attributable to fiber strain’’ and derives from Frankland’s analysis and Briggs’s

comparison to wood properties. There is no mention here or elsewhere in the

archived materials of an estimate of the required value of negative pressure.

Follow-Up Investigations

In order to reconsider Briggs’s theory, we studied Kalmia stamens that had been

collected for one of the authors’ (Hermann’s) PhD dissertation on stamen

development of Ericaceae.24 We photographed and measured filament cross and

longitudinal sections using material from both cultivated and wild plants.25 As can

be seen from the images in figure 5, the filament is fairly flat, like a ribbon, with the

wide faces in the adaxial and abaxial directions. The basal end of filament tends to

be slightly concave toward the adaxial side (figure 5a). This tendency reverses to

the other (abaxial) direction in the middle and distal portions of the filament

(figure 5b). Close to the distal end, the filament becomes more triangular in cross

section, with the wide base toward the abaxial side. The adaxial/abaxial flattening

of the cross section may be mechanically important in the flinging of pollen,

perhaps to maintain a directionality of the stamen’s motion that maximizes the

upward and outward dispersal of pollen.

Cells are noticeably larger on the abaxial side at the basal end (figure 5a),

which may be related to the generation of stress essential to the flinging motion of

Kalmia filaments. Figure 3 shows the filaments curving outwards to get the anthers

inside the corolla pockets. The only way they can do this is by elongation of the

adaxial epidermal (and neighboring) cells. Therefore at this level, the adaxial

epidermal cells might get longer than the abaxial ones. The size and shape of the

cross sections differ from the hypothetical geometry used by Frankland in his

calculations, as diagrammed in figure 6.

The botanical structure that, in a sense, constitutes a chamber filled with liquid

at negative pressure is the vascular bundle (figure 5), the main conduit for liquid

and nutrients in longitudinal transport through the plant. In the middle of the

filament, the vascular bundle is close to the center of the cross section (figure 5b).

Near the basal end, however, this bundle is considerably off-center in the adaxial

direction (figure 5a), so that compressive stress resulting from negative pressure

within it would increase the pollen-flinging force when the stamen is released from

its pocket.
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Our field observations show the distance traveled by pollen propelled by the

flinging motion range from 2 to 15, typically about 4 to 12 cm. After release,

curling of the stamen continues, consistently in the adaxial direction.26 This curling

can go as far as about 270 degrees, as was also noted by Briggs. Adaxial curling

continues for about 90 minutes, after which time the tight curl begins to relax.

Stamens triggered by dissecting probe or by stimulated heavy rain become

recumbent or flat, typically within 6 hours, though sometimes taking as much as

24 hours. Up to a day after flinging, stamens divide into four categories, with

Fig. 5. Cross and longitudinal sections of Kalmia filament. a Cross section near the basal end of

the filament; the vascular bundle is the cluster of small cells approximately centered laterally and

offset toward the adaxial side. b Mid-filament cross section with vascular bundle at the center of

the section. c Longitudinal section. Orientation: abaxial side toward the top in a and b; abaxial side

to the left in c.

Fig. 6. Idealized cross-sectional geometry of a Kalmia filament. a Circular form used by

Frankland to calculate extreme-fiber stress. b Combined rectangle and trapezoid approximating

the image in figure 5b above. Both images are to the same scale.
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varying degrees of relaxation from the tight inward curl: (1) still curled inward; (2)

axially erect; (3) recumbent (distal end of abaxially-extended filament and its

anther in a slight, C-shaped inward curve, like a person beginning to do a sit-up,

with anther raised above corolla bottom); and (4) fully extended abaxially and flat,

with filament and anther laying against base of the corolla and the anther laying

near its original pocket opening. At least for cut flowers, after flinging the stamens

first assume a tight adaxial curl, then slowly uncurl to an extended position, with

the discharged anther lying atop the pocket opening.

An issue bearing on the hypothesized role of negative pressure in the Kalmia

filament is whether wetness of the flower has the effect of suppressing the flinging

response of the stamens. The issue arises in Briggs’s notes, in an entry that is

undated though clearly written a few days after Briggs conducted successful

measurements on May 31, 1956:

Practically all open flowers inoperative following rain night of [Friday] June 1

and all day Sat. Stamen flat. No spring.

If ambient moisture did have this sort of suppressing effect, it could be construed

as evidence supporting Briggs’s concept of negative pressure underlying the

flinging behavior because surrounding moisture might decrease the magnitude of

this pressure. This behavior could be beneficial for propagation of Kalmia because

in rainy weather the pollen grains do not disperse as effectively and bee activity is

reduced. In our observations, however, the strength of the flinging mechanism was

not significantly affected by exposure of the flower to water by spraying, immer-

sion (up to 1 hour), natural rain, or simulated heavy rain.

The other side of this issue is whether unusual dryness affects the flinging motion.

On this, some evidence comes from experiments on cut flowers, removed from the

stem that supplies internal moisture. Cut flowers that have been in wet storage

36 hours after cutting, if not shriveled, can still undergo rapid, manually triggered

flinging. This is consistent with Briggs’s observation that flinging is unimpaired by

cutting at the stem and removing the flower from the rest of the plant.

On the whole, the available evidence on the effect of flower wetness does not

rule out an essential role of negative pressure in flinging, nor does it significantly

support this hypothesis. Assessment of the issue of basic filament materials on

their own being adequate to cause the observed flinging behavior requires further

exploration, detailed elsewhere.* Also important to consider is that component

materials within a botanical member differ widely in elastic properties. Data

suggest that parenchyma (internal material within a root or stem) is less elastic

(has much smaller Young’s moduli) than other component materials. Assuming

that materials like these dominate elastic behavior of the Kalmia filament, in

contrast to stiffer sorts of materials likely dominant in wood, this filament’s

* Additional details are available at http://wwwrcamnl.wr.usgs.gov/uzf/abs_pubs/papers/
Nimmo_etal.2014.Pollen_Dispersal_Biomechanics.appendix.pdf.
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properties overall do not seem unusual. This conclusion conflicts with Briggs’s

concept of an elastically-aberrant quality of the filament. Critiquing his unpub-

lished work in hindsight, we are drawn in a different direction through having a

more accurate description of the filament anatomy and a wider range of botanical

materials to compare with.

Indeed, seemingly minor discrepancies between the actual geometry of a Kal-

mia filament and the geometry assumed by Briggs and Frankland could support

the wrong conclusions about the pollen-flinging mechanism. Briggs’s overemphasis

on the need for stress augmentation shows that, while rigorous physical analysis

has much to contribute to the understanding of botanical tissues and processes, a

precise knowledge of the botanical structural elements is essential.

During development from bud to mature flower, stamens go through a rapid

elongation phase. Bending stress could be generated either by a faster growth rate

of the filament than the corolla or by a differential elongation within the filament

that would be faster on the abaxial than the adaxial side. Kress notes that

there were only two main interpretations when I wrote my Phytologia paper:

[Stress] grows with filament length (European scientists)–and [stress] of fila-

ments is caused by becoming bent back in growing buds and opening flowers

(American ones). Whether the outer side of the filaments is growing faster than

the inner one or the turgor increases more in the former than in the latter, or

both, remains undecided.27

Turgor refers to the hydrostatic pressure exerted on cell walls that contributes

rigidity to the plant’s structure. As a positive pressure in the material surrounding

the vascular bundle, turgor provides a complementary way of conceptualizing axial

pressure differences within the filament. Kress additionally observed evidence

from an increase in the possible degree of filament motion as the flower develops,

so that

in newly opened flowers the angle of bend will often not even reach 90�, while

270� will sometimes be exceeded in older (though not spent) flowers.28

Concerning the possible means of creating a bending stress through elongation of

the filament during flower development, Hermann and Palser observed that in

several genera including Kalmia, ‘‘the initial relatively slow growth of the filaments

is followed by very rapid elongation just prior to anthesis [opening of the

flower].’’29

The elongation hypothesis for creation of bending stress raises further ques-

tions. Is the magnitude of stress generated by elongation on its own enough to

cause the observed flinging behavior? How is it affected by wetness of the flower?

Do pressures internal to the stamen (implied by Kress with his mention of turgor)

supplement or dominate whatever stresses result from elongation? Consideration

of Brigg’s hypothesized role of negative pressure provides further illumination of

these issues.
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Though negative pressure is not essential to give the Kalmia filament the

observed elastic properties, it may still play an important role, for example in

generating bending stress within a member that was formed in place, as opposed to

one formed in an unstressed position and then repositioned to create stress (as in a

mousetrap). To create a directional bending stress by means of an inherently

nondirectional internal pressure, the filament cross section must be asymmetric in

stiffness.* If one side of the filament is stiffer through having greater Young’s

modulus or greater thickness, its hydromechanical character would be analogous

to the thermomechanical character of the bimetallic strip in some types of

thermometers.

Greater stiffness might result from excess lignification, as is the case within

coiling cucumber tendrils (lignin has a high Young’s modulus), or possibly from

greater thickness of parenchymatic tissue on one side of the vascular bundle.30 The

filament cross-sections in figure 5 show considerable variation in shape and other

characteristics. Features of note include (1) location of the vascular bundle closer

to the adaxial than the abaxial edge (figure 5a), in some cases with the vascular

bundle essentially at the adaxial edge; and (2) a somewhat triangular cross section

(figure 5b) with two of the three main lobes of parenchymatic tissue on the abaxial

side. These suggest greater stiffness on the abaxial side, as would be needed to

contribute positively to the bending moment that flings the pollen.

Another advantage of negative pressure to generate stress is that it can be

adjusted more quickly because it does not require tissue growth or permanent

transformation. Rapid adjustability could afford an advantage in promoting flin-

gability at optimal times for pollination, as discussed above in connection with the

effect of flower wetness. Thus, even without the need for negative pressure to

create unusual flexure properties, as Briggs hypothesized, we are left with the

possibility that negative pressure may play an important role in generating the

stress within the filament necessary to cause the forceful flinging of pollen.

Conclusion

For Briggs, his experiments with Kalmia, done when he was in his eighties, were a

continuation (albeit after a forty-year hiatus) of research begun at the USDA’s

Bureau of Plant Industry (BPI), where he headed the Physical Laboratory** from

1906 to 1919. A portion of his plant biophysics work was summarized in a pre-

sentation entitled ‘‘The Living Plant as a Physical System,’’ which he gave to the

January 1917 gathering of the Philosophical Society of Washington as its retiring

president.31 In this address, he highlighted his work on evapotranspiration done

* It may be helpful to note the rigorous definition of stiffness as the ratio of imposed force
to resulting displacement of a body, an extensive property based on dimensions as well as an
intensive material modulus.
** Later renamed the Biophysical Laboratory.
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with botanist Homer L. Shantz (1876–1958), who went on to become the president

of the University of Arizona. Briggs and BPI colleagues also worked on the

development of microscopy using UV light to examine fine detail in biological

specimens.32 In his post–World-War-II return to biophysics, Briggs’s interests

focused on negative pressure in plants, with a particular interest in the height of

water rise in trees.33 His Kalmia investigations seem to have been a spin-off of that

overarching interest.

Briggs was at the forefront of applying physics to complex biological problems

in the 1950s, when biophysics was just beginning to emerge as a discipline. The

Biophysical Society was founded in 1957 and began publishing the Biophysical

Journal in 1960.34 This pioneering role was not a unique experience to one who

served as presidential science advisor (to F. D. Roosevelt on the consequences of

Einstein’s atomic bomb warning) before such a formal position existed.12 Briggs’s

work establishes him as a pioneer in biophysics and interdisciplinary science.

Examination of 1950s era plant physiology textbooks suggests that Briggs intro-

duced a level of physical science expertise and thinking not typically seen during

this period.35 Drawing on his talent pool at NBS, he was able to bring in structural-

mechanics expertise not found in biological science research groups.

Nearly six decades after Briggs took on this problem, current knowledge still

contains gaps that leave room for doubt about the answer. The problem and its

incomplete resolution highlight the fact that important questions of pollen dis-

persal mechanisms and internal plant-water relations require expansion of our

understanding of biophysical properties and the dynamic behavior of plant tissues.
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Biomechanics of pollen-flinging 
 
Briggs’s (1954-1958) analysis was the first attempt to apply rigorous physical theory to 
the pollen-flinging mechanism of the Kalmia flower. More recently, Niklas (1992) has 
given a physical description of the flinging biomechanics of a related species, Kalmia 
angustifolia. Here we present some of the physical reasoning and calculations apparent 
from the materials Briggs left behind, with updated interpretations made possible with 
recent knowledge of the filament geometry and the properties of related botanical 
materials 

The bending of the filament of the Kalmia flower is an inherently two-dimensional 
problem involving curvature and transverse forces.  Desirable simplifications result from 
transforming it into a largely one-dimensional problem of simple lengths and 
displacements. Briggs and Frankland did this by the standard method of extreme-fiber 
analysis. The filament is conceptualized as a tight bundle of infinitesimally thin 
hypothetical fibers. Here the word “fiber” refers to a hypothetical geometric element, and 
does not correspond to any physical botanical structure. Each fiber experiences a 
particular longitudinal stress and strain caused by the bending stress. Fibers at the edges 
that experience the greatest stress are called the extreme fibers; in the Kalmia filament 
these are at the extreme ad- and abaxial positions. Briggs’ measured dimensions indicate 
extreme fiber strain of 4.7% for a filament bending through 270° as in figure 4.  

Frankland calculated extreme fiber stress using the flexure equation, which defines 
bending stress as  

(1)    
∫

=

A

x dAy
Myy

2
)(σ

  , 

where M is the bending moment (the product of length and applied force of the filament, 
considered as a cantilever beam loaded at its distal end). Briggs’s measurements give a 
bending moment of 2.0 μNm; A is the area of the beam’s cross-section. The coordinate x 
is in the longitudinal direction of the beam, and the y-z plane is normal to it (figure 6). 
The coordinate y is in the direction of the bending force and has its origin on the neutral 
axis, defined as the set of points in the y-z plane at which the bending stress σx(y) is zero. 
Conceptually the neutral axis is the line that stays fixed when the beam is bent, around 
which the off-axis portions of the beam tend to rotate. The integral in the denominator is 
frequently called the moment of inertia, though because it includes no inertial mass, it is 
less confusingly called the second moment of the cross-sectional area.  
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With limited knowledge of its actual physical characteristics, Frankland 
conceptualized the filament as tube of circular cross section filled with fluid (in some 
instances referred to a gas). He assumed the material was homogeneous, so the neutral 
axis was simply a diameter. Given an outside radius R, the extreme fiber stress is σx(R). 
He calculated stress for various tube wall thicknesses. An actual filament internally 
comprises cells and intercellular spaces without a singular chamber resembling the 
interior of a tube, and it does not contain significant gas. Thus, the most relevant of 
Frankland’s calculations is the one having tube wall thickness equal to the tube radius, 
i.e. a rod rather than a tube. The area of integration A being a circle, with Briggs’ data and 
Frankland’s assumed geometry, the calculated extreme fiber stress is 0.12 MPa.  

Frankland, though he appropriately used the mid-filament thickness 250 µm when he 
was calculating extreme fiber strain, took the diameter of the circular cross section he 
used for calculating extreme fiber stress to be the basal lateral thickness of the filament, 
560 µm. This unrealistically large size is apparent in figure 6. The distribution of stress 
from a given bending moment over a larger area makes any given fiber stress less; this 
large area in the integral in (1) leads to Frankland’s value of extreme fiber stress. The 
small value he obtained was unrealistic for a beam whose own unaugmented stress could 
accomplish the Kalmia’s flinging of pollen and thus contributed unwarranted support for 
the argued necessity of negative pressure contributing a major component of the stress. 

Unlike the circular geometry, whose symmetry locates the neutral axis exactly on a 
diameter, the more realistic geometry requires a calculation of its position. For this, we 
assume homogeneity of the filament material, which is not strictly true (from figure 5 it is 
clear that the cross section contains different materials, cell sizes, and structures) but may 
be adequate for evaluating the reasonableness of computed values. Assuming also that 
the bending is entirely in the elastic range (Hooke’s law applies throughout), stress and 
strain in the bent filament increase linearly with y, whose zero is on the neutral axis. For 
the static case, appropriate to the pinned filament, compressive stress over the area above 
the neutral axis must balance the tensile stress over the area below. This condition 
determines the location of the neutral axis (n.a.): 

(2)    
∫∫

−−−−

−=
.... anbelowAreaanaboveArea

ydAydA
   

In words, the first moment of area must balance across the neutral axis.  
Integration over the indicated polygonal shapes with the measured dimensions gives 

the neutral axis position as 74 µm from the abaxial edge. Integrating with the second 
moment of area in the flexure formula (1) gives the bending stress σx(y). Using Briggs’ 
measured bending moment M, the abaxial (y = c) extreme fiber stress is 1.45 MPa. 
Recalculating the extreme fiber strain (again for the filament going through the 270° bend 
shown in figure 4), using our estimates of the filament dimensions we obtain a value of 
0.036, smaller than Frankland’s 0.047 because of the smaller filament thickness. The 
ratio of stress to strain then indicates a Young’s modulus of 40 MPa, larger by a factor 16 
than what Briggs and Frankland’s analysis would have given (Table I). This larger value 
indicates greater ability of the filament to apply force from unbending, and so diminishes 
the need for Briggs’ hypothesized augmentation of the force with negative pressure.  
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The second area where new knowledge can enhance Briggs’s interpretation is in the 
properties of relevant materials. Elastic limits of botanical materials are rarely measured 
outside of construction applications; most such measurements are for wood used as a 
construction material. In Table I we have compiled measured and computed values of 
such properties for the Kalmia filament and other materials selected for comparison. 
Young’s modulus is the one property known for all items here.  
 
TABLE I. Elastic properties of selected materials of botanical origin.  
Material Extreme 

Fiber 
Strain 

Extreme 
Fiber 
Stress 
(MPa) 

Young's 
Modulus 
(MPa) 

Strain 
at 
Elastic 
Limit 

Stress at 
Elastic 
Limit 
(MPa) 

K. latifolia filament--
Briggs/Frankland values (Briggs, 
1954-1958) 

0.047 0.12 2.5    

K. latifolia filament--our values  0.036 1.45 40   
Pine wood (Marks, 1930)   8030 0.00314 25 
Riparian stems and branches 
(Sutili and others, 2012) 

  4540 0.015 45 

Parenchyma (Niklas, 1992)   50   
Lignin (Cousins and others, 1975)   3300 0.067 220 
Cellulose  (Niklas, 1992)   400000   
Parenchyma of Pachycereus 
pringlei (Niklas and others, 1999) 

  4.6 to 9.6    

Stem rib tissue of Pachycereus 
pringlei (Niklas and others, 1999) 

  1900 to 2800   

 
The measurements of Sutili and others (2012) for stems and branches of four species 

of riparian plants are more appropriate for comparison than the wood (lumber) data 
available to Briggs. The motivation for these measurements was not to assess suitability 
for construction but rather to understand the performance of streambank vegetation in 
altering flow patterns within the river and reducing erosion. The stems and branches 
measured are relatively young and thin, so perhaps more similar to a Kalmia filament. 
Compared to wood used for construction, these have a smaller Young’s modulus, greater 
capacity for stress in the elastic range, and much greater strain at elastic limit (1.1% to 
1.5%). On the whole these properties suggest much closer resemblance to a Kalmia 
filament.  
 
 
Briggs, L.J., 1954-1958, Records relating to scientific work, 1907-1962 office files of 

Lyman J. Briggs, (College Park, MD: National Archives and Records 
Administration, 1954-1958) Record Group 167 (National Institute of Standards 
and Technology), entry 2, box 14. 
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