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The need to quantify unsaturated hydraulic properties for 
predicting subsurface transport phenomena, coupled with 

the diffi culty of measuring these properties, has motivated efforts 
to develop property-transfer models that estimate the hydraulic 
characteristics based on more easily measured properties such as 
soil texture. Such models are usually classifi ed as either physically 
or empirically based (Haverkamp et al., 2002), although many 
models are not purely one or the other.

In this paper we focus on computing water retention from 
particle-size distribution, rather than unsaturated hydraulic 
conductivity from water retention (Mualem, 1976) or multiple 
hydraulic properties from various inputs (Schaap et al., 2001). 
We emphasize models that have some type of physical basis as 
opposed to empirical relationships formulated using a database. 
Many different models have been developed for this purpose 
(e.g., Arya and Paris, 1981; Haverkamp and Parlange, 1986; 

Mishra et al., 1989; Chan and Govindaraju, 2004; Winfi eld, 
2005). Models formulated to apply to particular locations or 
types of media, as long as they are applied to these cases, usually 
produce the most accurate results. Models of wider applicability 
involve compromises that are likely to make them less accurate 
in general. Different models have different virtues and defects, 
for example, performing better or worse in certain parts of the 
moisture range. Particle-size–based models need further devel-
opment to apply to soils with complex structure. Thus, it is to 
be expected that new models continually need to be developed, 
either to apply to a specifi c site or material or to produce results 
of improved reliability or applicability.

Because closely related concepts are involved in many of the 
published property transfer models, it is possible, by recogniz-
ing common features, to create a general theoretical framework 
that ties together a family of individual models. General mod-
els of this type for unsaturated hydraulic conductivity are pre-
sented in papers such as those of Mualem and Dagan (1978), 
Hoffmann-Riem et al. (1999), and Kosugi (1999). Within a 
general framework, explicit specifi cation of a set of conditions 
designates a particular model. This situation is analogous to the 
way a general solution of a differential equation encompasses a 
wide range of particular solutions, any of which can be singled 
out by specifying conditions. In this way a general model can 
serve as a template for generating new models that may be supe-
rior in basic reliability of predictions or in accuracy of results for 
particular situations. A general theoretical framework is also use-
ful for showing how different models within a family are related, 
for identifying essential and optional assumptions, and for facili-
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Numerous models are in widespread use for the estimation of soil water retention from more easily measured textural data. 
Improved models are needed for better prediction and wider applicability. We developed a basic framework from which new and 
existing models can be derived to facilitate improvements. Starting from the assumption that every particle has a characteristic 
dimension R associated uniquely with a matric pressure ψ and that the form of the ψ–R relation is the defi ning characteristic of 
each model, this framework leads to particular models by specifi cation of geometric relationships between pores and particles. 
Typical assumptions are that particles are spheres, pores are cylinders with volume equal to the associated particle volume times 
the void ratio, and that the capillary inverse proportionality between radius and matric pressure is valid. Examples include fi xed-
pore-shape and fi xed-pore-length models. We also developed alternative versions of the model of Arya and Paris that eliminate 
its interval-size dependence and other problems. The alternative models are calculable by direct application of algebraic formulas 
rather than manipulation of data tables and intermediate results, and they easily combine with other models (e.g., incorporat-
ing structural effects) that are formulated on a continuous basis. Additionally, we developed a family of models based on the 
same pore geometry as the widely used unsaturated hydraulic conductivity model of Mualem. Predictions of measurements for 
different suitable media show that some of the models provide consistently good results and can be chosen based on ease of 
calculations and other factors.
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tating conversion of results or applications from one model to 
another.

In this paper we derive a general framework for property 
transfer models and illustrate its application with different 
assumptions that lead to various particular models, both new 
and previously published. The emphasis here is on the interme-
diate and wet range of the retention curve, characterized by the 
capillary emptying and fi lling of individual pores at particular 
values of ψ, as opposed to the drier range characterized by water 
in fi lms. The general framework is intended to apply to either 
drying or wetting curves, although hysteresis is not explicitly 
treated. In this category of models that are based on hypothe-
sized pore-scale physical relationships, the Arya and Paris (1981) 
(AP) model has dominated unsaturated-zone applications (e.g., 
Buczko and Gerke, 2005; Vaz et al., 2005) despite shortcom-
ings that have been known since its introduction (Haverkamp 
and Parlange, 1982). Many modifi cations and adaptations of the 
AP model have been developed (e.g., Basile and D’Urso, 1997). 
Much of this paper pertains in particular to the AP model and 
models that are related to it or have a similar purpose. Another 
objective is to produce a model that gives results essentially iden-
tical to those of the AP model but is formulated on a continu-
ous basis and does not depend on the choice of interval size for 
particle-size data.

General Framework

The following are four basic assumptions for a property-
transfer model that goes from pore-size distribution to reten-
tion:
1. Every particle has a characteristic dimension R.
2. Every R value is uniquely associated with a matric pressure ψ.
3. Every R value is uniquely associated with a local void ratio el 

or, equivalently, a local porosity φl, with el = φl/(1 − φl).
4. At a given volumetric water content, θ, fi lled pores are those 

in which ψ is less than or equal to a certain value associated 
with that θ.

These assumptions lead to a general model in which θ at a given 
ψ equals the integration of all pores fi lled at that ψ:

( )
l0

( ) ( ) ( )d
R

e R F R R
ψ

θ ψ = ∫  [1]

where F is the volumetric distribution of particle size (normal-
ized to 1 − φ, the fraction of the total sample space occupied by 
particles, where φ is the porosity of the medium as a whole). 
Particular models can be generated by assigning functional forms 
to R(ψ) and el(R). The form of R(ψ) can be an arbitrary choice, 
such as a straight line or an exponential curve on a graph of R 
versus ψ. Typically, one would choose a relation constrained by 
physical concepts, for example, that ψ relates to pore size by cap-
illarity and that pore size relates to R by a hypothetical geometric 
construction. In effect, for each particle there is an associated 
pore, the pore size being specifi ed as a function of the particle 
size, and for each pore size there is a characteristic ψ value at 
which the pore fi lls or empties.

The function el(R) could be chosen to represent a systematic 
variation of packing effi ciency with particle size. For example, an 
increase of el in the clay size range might express the tendency 
for large (e.g., interaggregate) pores to be more prevalent in fi ne-

textured soils. In most models, however, and for the rest of this 
paper a fi fth assumption is adopted:

5. Void ratio is has a uniform value, symbolized e, throughout 
the medium.

This assumption is valid to the extent that the structure of the 
medium is uniform in a continuum sense, subject to the validity 
of a representative elementary volume smaller than the scale at 
which hydraulic processes are to be considered. Assumption 5 
simplifi es the general model to

( ) ( )
( )

cum0
( ) ( ) d ( )

R
e F R R eF R

ψ
θ ψ = ψ = ψ∫  [2]

where Fcum is the cumulative volumetric distribution of particle 
size (normalized to φ). This relation between the functions rep-
resenting water retention and particle-size distribution is prob-
ably what suggests the term shape similarity in many discussions 
of property transfer models. In general this term is only loosely 
applicable because R(ψ) can be nonlinear.

A common but nonessential assumption is:

6. Particle density ρp is the same for all particles.

Assumption 6 is not valid in general because for natural media, 
the material composition of particles can be expected to vary 
with size (e.g., clay minerals predominate at the smallest sizes). 
Because particle-size distributions are usually reported on a mass 
basis, however, this assumption is also used here. It permits the 
substitution for Fcum(R) of the mass particle-size distribution:

p
cum cum cum

p
( ) ( ) ( )eM R F R F R

ρ
= =

ρ φ
 [3]

where ρb is the bulk density and Mcum is the cumulative mass 
distribution of particle size (normalized to 1). In terms of Mcum, 
the general model can be expressed as

( )cum( ) ( )M Rθ ψ =φ ψ  [4]

An important subset of the possible models defi ned by Eq. 
[2] or [4] uses additional geometric assumptions:

7. Particles are spheres with effective radius R.
8. Pores are cylinders with effective radius r and length h.

For unsaturated pore-water relations, there one more usual 
assumption:

9. Capillary behavior determines whether a pore is empty or full, 
that is, r = Cc/ψ, where Cc is a parameter that depends on 
surface tension and contact angles, and equals about 130 
µm-kPa for typical soil water.

Setting the void ratio equal to the volume of a cylindrical pore 
divided by the volume of a spherical particle relates the three 
geometric parameters R, r, and h:

1/234
3
R er
h

⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
 [5]



www.vadosezonejournal.org · Vol. 6, No. 4, November 2007 768

Development of Particular Models
To generate a particular model, the necessary steps are (i) 

choose a geometric relation that defi nes h in terms of R or r; (ii) 
use the chosen relation to eliminate h from Eq. [5] above, thus 
producing a R(ψ) function that characterizes the model; and (iii) 
put the R(ψ) formula into the general Eq. [4] (or Eq. [2]) to 
produce the particular property transfer model, θ(ψ) equal to a 
function of M(R).

Proportional Cylinder (PC) Model

A simple model is based on the assumption of a fi xed cylin-
drical shape for each pore, length proportional to radius:

PCh C r=  [6]

where CPC is the proportionality constant. This is the pore-shape 
assumption used by Mualem (1976, Fig. 1) in his capillary-bun-
dle model for hydraulic conductivity. Applying the above capil-
lary and geometric relations,

1/2
c

PC

c 3
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4
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C

R e
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⎢ ⎥
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 [7]

which reduces to

1/3
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4
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R
e
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 [8]

In Eq. [4] this relation gives the retention curve:
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e

⎛ ⎞⎡ ⎤ ⎟⎜ ⎟⎜ ⎢ ⎥θ ψ = φ ⎟⎜ ⎟⎢ ⎥⎜ ψ ⎟⎜ ⎣ ⎦⎝ ⎠
 [9]

This equation defi nes a family of proportional cylinder (PC) 
models that differ in the value given to CPC.

Arya–Dierolf Model

Arya and Dierolf (1992) (AD) created a model with the 
assumption that all pores have equal length, h(r) = hAD for all r. 
Pores corresponding to the smaller particles then have extremely 
small r in order for their volume to take the value necessitated by 

the particle size and void ratio. Following the steps as above for 
substitution into Eq. [4], the AD model is

2/3 1/3
c AD

cum
3

( )
4

C hM
e

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎟⎜ ⎟⎜⎢ ⎥ ⎢ ⎥θ ψ = φ ⎟⎜ ⎟⎢ ⎥⎜ ⎢ ⎥ ⎟ψ ⎟⎜ ⎣ ⎦⎣ ⎦⎝ ⎠
 [10]

As before, the argument of the function Mcum(R) is the formula 
for R(ψ) that defi nes the model. In tests with fi ve soils, Arya and 
Dierolf (1992) found that hAD values between 3 and 15 mm 
produced good predictions and that a value of 10 mm should 
work well for many soils. A virtue of this model is that sensitivity 
to the value of hAD is low.

Analogous Formulation of the AP Model

Arya and Paris (1981) assumed a complicated geometric 
relation in which r is specifi ed by a formula that varies with M(R) 
and that has a parameter whose value is determined empirically 
from a database of properties for various soils. This model is 
formulated in fi nite intervals, most applications having about 
5 to 20 intervals for a 0- to 1-mm range of R. Haverkamp and 
Parlange (1982) and others have criticized the AP model for 
its interval-size dependence on the grounds that a pore radius 
would not fundamentally depend on arbitrary choices made in 
analyzing samples. Arya and Paris (1982) responded that the dis-
crepancy this causes is acceptable because the variation in choice 
of intervals makes only a small difference. It is clearly desirable, 
however, to formulate a near-equivalent of the AP model that 
is based on continuous functions and therefore avoids interval-
dependence completely. Because the AP model cannot be for-
mulated exactly using the continuous formulas of our general 
framework, we fi rst reformulate it in an analogous fi nite-interval 
framework before developing a near-equivalent model that fi ts 
the continuous-function framework.

The AP model matches ψi at the center of each interval 
with an average water content specifi ed by an analog to the con-
tinuous-θ Eq. [4]:

[ ]cum b 1 cum b( ) ( )
2

i i iM R M R−
φ

θ = +  [11]

where subscript i indicates the midpoint and subscript bi indi-
cates the right-side bound of interval i. A discrete-interval ver-
sion of the basic cylindrical-pore geometric relation, Eq. [5], is

1/23

avg-

4
3

i
i

i

R e
r

h

⎛ ⎞⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
 [12]

where havg-i is the length of a single average pore for interval i, 
with the total number of such pores taken to equal the number 
of particles in the interval. Early in Arya and Paris’s develop-
ment, they provisionally specifi ed the length havg-i to equal the 
particle diameter 2Ri, which with the capillarity relation gives

1/2
c 3

2i
i

C
R

e
⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠ψ

 [13]

This equation is equivalent to the PC model if CPC is given 
the value (6/e)1/2. The AP model departs from the PC model 
in making havg-i greater than 2Ri by a factor depending on a 
parameter α and the number of particles in the interval:FIG. 1. Cumulative particle-size distributions of the three test media.
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( )1
avg- o2 ( )i i ih R m n α−=  [14]

where mo is a standard mass, taken to equal 1 g in AP formulas, 
and ni is the number of particles, per total sample mass, in inter-
val i. The formulas published by AP do not show it explicitly, 
but inclusion of mo is essential for dimensional consistency and 
to avoid sample-size dependence of the results. The value of 1 g 
for this standard mass is implicit in the example calculations of 
Arya and Paris (1982). Substituting this enhanced pore length, 
Eq. [14], into the geometric relation, Eq. [12], leads to

( )( ) 1/21
oc 3
2
i

i
i

m nC
R

e

α−⎡ ⎤
⎢ ⎥= ⎢ ⎥ψ ⎢ ⎥⎣ ⎦

 [15]

Because the original version of the AP model uses the number 
distribution ni instead of the mass distribution M(R), it is useful 
to relate these quantities to each other. For this purpose, consider 
n(R), defi ned such that n(R)dR is the number of particles in the 
infi nitesimal interval R to R + dR, per unit sample mass. Because 
M(R)dR is the mass of particles in that interval, per unit sample 
mass, M(r) is equal to n(R) times the mass of a single particle of 
radius R. This gives

3
p

3 ( )
( )

4
M Rn R
R

=
π ρ  [16]

In the fi nite interval i, the number of particles per total sample 
mass is

b b

b 1 b 1
3
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R− −
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which in combination with Eq. [15] gives

b

b 1
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α−⎧ ⎫⎪ ⎪⎡ ⎤⎪ ⎪⎪ ⎪⎢ ⎥ψ = ⎨ ⎬⎢ ⎥⎪ ⎪πρ⎢ ⎥⎪ ⎪⎣ ⎦⎪ ⎪⎩ ⎭
∫  [18]

After inverting for Ri(ψi) this equation becomes an analog to 
the R(ψ) function needed to specify a particular model in the 
general framework. Pairing ψi with θi from Eq. [11] gives AP 
model results. In cases where M(R) can be expressed as an alge-
braic form that permits Eq. [18] to be analytically inverted, the 
resulting Ri(ψi) function could be substituted in Eq. [11] to give 
a single-equation expression of the AP model.

Continuous Near-Equivalent of the AP Model

For a continuous-function equivalent of the AP model, 
consider the limit as the particle-size interval size goes to zero 
(Rbi−1→ Ri and Rbi→Ri). In this limit,

d

i

i

i

i

R R
n n R

θ → θ
ψ → ψ

→
→

 [19]

and the number of particles (within a sample of size mo) is

o
o 3

p

3 ( )
( )d d

4
m M Rm n R R R

R
=

πρ
 [20]

The equivalent of Eq. [18] is
1/21

c o
3

p

3 ( )d3
2 4

C m M R R
R e R

α−⎡ ⎤⎛ ⎞⎢ ⎥⎟⎜ ⎟⎜ψ= ⎢ ⎥⎟⎜ ⎟⎜⎢ ⎥πρ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦
 [21]

This formula explicitly shows the inherent AP interval-size 
dependence. As dR→0, if α > 1, then ψ→0, and if α < 1, then 
ψ→∞. Thus, a continuous form of the original AP model is 
impossible unless the value chosen for α is 1. That choice makes 
this model identical to the proportional cylinder model, and Eq. 
[21] becomes equivalent to Eq. [7] ,with CPC = (6/e)1/2. For the 
typical case of α valued between 1 and 2, ψ goes to zero more 
slowly than dR does, which supports the claim that AP modeled 
retention curves are not very sensitive to interval size. The sensi-
tivity to interval size increases for α signifi cantly greater than 1.

A continuous-function formula that closely approximates 
the AP model can be obtained by replacing the differential dR in 
Eq. [21] with a fi nite expression δR, selected for consistency with 
earlier practice concerning interval size. Arya and Paris (1981) 
tested the model with data sets having fi ve to eight intervals but 
noted that “a more detailed fractionation of the soil would be 
desirable” (p. 1030). To demonstrate the model calculations, 
Arya and Paris (1982) chose the case of 13 intervals over the R 
range from 0 to 1000 µm, whose bounds are listed in Table 1. 
Considering this case as an effective standard, the average value 
of the ratio of interval width to interval midpoint is 0.7154. This 
value is close to the value of two-thirds that would result from 
defi ning δR to equal the interval’s lower bound. Approximate 
consistency with previous AP results can be achieved by replac-
ing the differential dR in [21] with δR = (2/3)R, giving

1/21

2
( )3

2 2
c o

p

C m M R
R e R

α−⎧ ⎫⎪ ⎪⎡ ⎤⎪ ⎪⎪ ⎪⎢ ⎥ψ= ⎨ ⎬⎢ ⎥⎪ ⎪πρ⎢ ⎥⎪ ⎪⎣ ⎦⎪ ⎪⎩ ⎭  

[22]

This equation is a continuous near-equivalent of the AP model 
(CNEAP). Practical use of CNEAP, for given Mcum(R) and φ, 
would usually be as follows: (i) compute M(R) from Mcum(R) by 
numerical differentiation (e.g., Ralston, 1965) or by fi tting an 
analytical function to the data and differentiating that function; 

TABLE 1. Particle-size intervals used by Arya and Paris (1982) for the 
soil S58NJ-12-2. Radii are in micrometers.

R (upper bound) Raverage ∆R ∆R/Raverage
0
0.5 0.25 0.5 2.0000
1 0.75 0.5 0.6667
2.5 1.75 1.5 0.8571
5 3.75 2.5 0.6667
10 7.5 5 0.6667
15 12.5 5 0.4000
25 20 10 0.5000
50 37.5 25 0.6667
100 75 50 0.6667
250 175 150 0.8571
350 300 100 0.3333
500 425 150 0.3529
1000 750 500 0.6667
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and (ii) for each value of R for which a θ(ψ) point is desired, 
compute ψ from Eq. [22] and θ from Eq. [4]. Alternatively, if 
a directly usable θ(ψ) function is desired, one can use an M(R) 
function that permits inversion. The inverted Eq. [22] substi-
tuted into Eq. [4] gives a single-equation θ(ψ) formula.

Additional simplifi cation is possible by assuming a particu-
lar universal M(R) function for the purpose of relating ψ and 
R. For this purpose we have tested a simple functional form, 
namely, a uniform mass distribution of particles up to the maxi-
mum particle size Rmax:

max max( ) 1/  for M R R R R= ≤  [23]

max( ) 0 for M R R R= >  [24]

This function is used only for the purpose of relating ψ and 
R, not for the determination of the retention curve with Eq. 
[4], so the effect on model results is small. Substitution into the 
continuous formula Eq. [22] gives an R(ψ) for use in Eq. [4] 
to yield a uniform-mass-distribution version of the continuous 
near-equivalent of the AP model (UCNEAP):

1
1/ 1/2 2

c
cum

p max

3( )
2 2

oC m
M

e R

α−
α α α

⎛ ⎞⎟⎜ ⎡ ⎤ ⎟⎜⎡ ⎤ ⎡ ⎤ ⎟⎜ ⎢ ⎥ ⎟⎢ ⎥⎜θ ψ = φ ⎢ ⎥ ⎟⎜ ⎢ ⎥ ⎟⎢ ⎥ ⎢ ⎥⎜ ψ πρ ⎟⎣ ⎦⎣ ⎦ ⎢ ⎥ ⎟⎜ ⎣ ⎦ ⎟⎜⎝ ⎠

 [25]

This is a single-equation continuous-function model that approx-
imates the AP model.

Model Tests
Data

We chose data sets for three samples to test and illustrate 
model results (Table 2). The data were for soils and sediments 
with relatively simple structure that are expected to be suitable 
for the class of models addressed here, but spanning a signifi -
cant textural range. Sample S58NJ-12-2, the same chosen as 
an illustrative example by Arya and Paris (1982), is relatively 
coarse, from a shallow depth, and was repacked before measure-
ment of θ(ψ), so features of natural soil structure were destroyed. 

Samples PODL-1-6.6 and SC2 are coarser in texture and were 
measured as minimally disturbed cores, although their structural 
complexity is limited because of coarseness (especially SC2) and 
origination from depths below the surface region of most intense 
weathering (especially PODL-1-6.6). Figure 1 shows the par-
ticle-size distributions. Table 3 gives the coeffi cient of determi-
nation, as a measure of goodness-of-fi t, for eight models fi t to 
the three samples.

TABLE 2. Media for illustrative model tests.

Sample Location Sampled material Depth Textural class Porosity Reference
S58NJ-12-2 Middlesex County, NJ B23t horizon 0.6 m loam 0.362 Soil Conservation Service–USDA (1974)
PODL-1-6.6 Morgan Creek watershed, MD Coastal-plain sediments 6.6 m sandy loam 0.3647 Perkins (personal communication, 2004)
SC2 Sheep Creek, Mojave Desert, CA Fluvial deposit 0.7 m sand 0.397 Winfi eld et al. (2006)

TABLE 3. Coeffi cient of determination R2 for model fi ts to data.

Model† S58NJ-12–2 PODL SC2
PC CPC = 3 0.6875 0.9385 0.5329
PC CPC = 100 0.8275 0.9323 0.9777
PC CPC = 1000 0.9222 0.8899 0.9429
PC CPC = 10000 0.9823 0.8006 0.8268
AD hAD = 1 cm 0.9849 0.9475 0.9911
AP-13 int 0.9789 0.9518 0.9960
CNEAP 0.9836 0.9541 0.9848
UCNEAP 0.9657 0.9553 0.9807

† PC, proportional cylinder; AD, Arya–Dierolf; AP, Arya–Paris; CNEAP, continu-
ous near-equivalent of the AP model; UCNEAP, uniform-mass-distribution 
version of the continuous near-equivalent of the AP model.

FIG. 2. Proportional cylinder (PC) model with four values of the pro-
portionality constant (CPC) applied to the three test media: S58NJ-12-
2, PODL-1-6.6, and SC2.
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Results
Predictions of the PC model for four values of the param-

eter CPC are given in Fig. 2. One might expect that in a sandy 
medium, the length of a pore associated with a particular par-
ticle would be on the order of the particle radius, implying a 
small value of CPC. The (6/e)1/2 value suggested by comparison 
to other models equals about 3 for typical media. The optimal 
value of CPC, however, is about 100 or greater for all three test 
media. A CPC value of 3 seriously underpredicts each case. Even 
with larger CPC values, the model has a bias toward underpredic-
tion in the dry range.

The AD model produces better predictions than the PC 
model for any of the illustrated CPC values (Fig. 3). The R2 val-
ues in Table 3 show that if one selects the optimal CPC value, the 
PC model can fi t nearly as well as the AD model, but the AD 
model has been applied here with a standard hAD equal to 10 
mm and no further parameter optimization. With its enhanced 
contribution of the smallest-radius pores, the AD model does 
not underpredict the low θ range as badly as the PC model does. 
The hAD value of 10 mm works well for S58NJ-12-2 and SC2 
and mostly overpredicts θ for PODL-1-6.6. In all three cases, it 
gives a fi t close to that of the original AP model.

The CNEAP model (Eq. [22]) gives results nearly identical 
to those of the original AP model with 13 intervals, as shown in 
Fig. 4. Results of the UCNEAP (Eq. [24]) differ slightly from 
the AP model. Although better agreement may be possible with 
a different M(R) dependence embedded in the R(ψ) relation, it 
is not necessary to have such a dependence in the fi rst place. In 
practice the simpler UCNEAP model may generally perform as 
well as the AP model.

Discussion

From the starting point that a property transfer model for 
predicting water retention curves from particle-size distribu-
tions can be characterized by a particular relationship between 
particle size and matric pressure, we evaluated several different 
models within a unifying framework. The applications devel-
oped here fall within a particular subset of the possibilities, and 
all of them consider particles as spheres and pores as cylinders. 

It is worthwhile to explore wider possibilities, especially models 
that are not tied to the sphere–cylinder geometry and models 
that account for hysteresis. It also is not necessary to base the 
particular model on a geometric form; an algebraic R(ψ) could 
be selected for use in Eq. [4] based on fundamental or empirical 
reasoning or mathematical convenience. The models considered 
are applicable for media of simple structure, although modifi ca-
tion could allow them to represent properties of media with sig-
nifi cant structural features such as aggregation and macropores 
(e.g., Nimmo, 1997).

Two models explored here, the PC and AD models, are 
especially simple. The PC model may have advantages in com-
bining with the Mualem (1976) model for unsaturated hydrau-
lic conductivity, as the combination would use the same hypo-
thetical geometry for both water retention and unsaturated K 
property transfer. The AD model is as simple to apply as the 
PC model and probably gives more realistic predictions. Both 
of these models seem only to work well if it is assumed that 
cylindrical pores have length much greater than their diameters, 
for example, about 10 mm for a 10-μm radius. This may refl ect 
a departure of the physical processes of water retention from 
the cylinder-model assumptions, especially in the low θ range 
where adsorption leads to water retention in both small and large 
pores independent of capillary fi lling. Cylinder elongation in the 
model can artifi cially compensate for this effect. Such compensa-
tion, however, seems to be needed not only for pores sized at the 
lower limits of capillarity but also for ψ values up to about −10 
kPa, corresponding to capillary radii of tens of microns. These 
considerations do not preclude practical use of such models, but 
it should be recognized that the hypothetical elongated cylinders 
probably do not approximate actual pore shapes.

With additional assumptions that relate the fi nite intervals 
and the M(R) dependence of R–ψ to the types of data and calcu-
lations the AP model was designed for, we created the CNEAP 
model within the general framework. This new model produces 
results consistent with earlier AP model calculations but uses a 
formula that is a continuous function. An additional simplifi ca-
tion produces the UCNEAP model, which allows single-func-
tion representation of θ(ψ) closely resembling the AP model. 

FIG. 3. The Arya –Dierolf (AD) model with hAD = 10 mm compared with 
the proportional cylinder (PC) model with CPC = 1000 and the original 
Arya–Paris (AP) model applied to the three test media.

FIG. 4. The Arya–Paris (AP) model with 13 intervals, the continuous 
near-equivalent of the AP (CNEAP) model, and the uniform-mass-
distribution version of the continuous near-equivalent of the AP (UC-
NEAP) model, all with α = 1.38, applied to the three test media.
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The deviation from 13-interval AP-model results of the CNEAP, 
UCNEAP, and AD models (Fig. 4) is probably less than the devi-
ations within the AP model itself when different interval sizes 
are used. The versions examined here are calculable by directly 
applying an algebraic formula rather than manipulating tables 
of data and intermediate results. The AD and UCNEAP mod-
els also eliminate the dependence of the geometric pore-cylinder 
relation on the particle-size distribution. The CNEAP model 
is equivalent to AP except for the fi nite-versus-continuous dis-
tinction and so should produce essentially identical results for 
diverse media and circumstances.

The continuous form of the alternative models has value 
beyond its assurance that interval size cannot affect results. In 
developing new models (e.g., incorporating structural effects), 
when the development involves combining AP with one or more 
other models, and those other models are formulated on a con-
tinuous basis, the combining is simpler and more straightfor-
ward if the AP is also on a continuous basis. Such combinations 
have been shown to be fruitful, for example, in the models of 
Mishra et al. (1989), Nimmo (1997), and Hwang and Powers 
(2003). A further advantage is that the continuous AP version, 
expressible in two equations, can be simpler than the original 
discrete-interval version. It also avoids the discontinuity of slope 
in the modeled curve that occurs where interval size undergoes 
a signifi cant change.

Certain cases of the different models are exactly equivalent. 
The AP, CNEAP (Eq. [22]), and UCNEAP (Eq. [24]) models 
are equivalent to the PC model if we set α = 1 and CPC = (6/e)1/2 
≈ 3. The UCNEAP formula is very similar to the AD formula, 
as may be seen by writing Eq. [25] as

U
cum 1/( )

C
M α

⎛ ⎞⎟⎜ ⎟θ ψ = φ ⎜ ⎟⎜ ⎟⎜ψ⎝ ⎠  [26]

and Eq. [10] as

AD
cum 2/3( )

CM
⎛ ⎞⎟⎜ ⎟θ ψ = φ ⎜ ⎟⎜ ⎟⎜ψ⎝ ⎠  [27]

where CU and CAD lump together various constants that appear 
in the UCNEAP and AD formulas. If we set α in Eq. [26] to 
1.5 (close to the original AP recommendation of 1.38), then 
equating CU and CAD gives the condition for equivalence of the 
two models, namely, that the product of hAD and Rmax

1/2 equals 
15.5 mm3/2. Thus the UCNEAP model with α = 1.5 is equiva-
lent to the AD model with the traditional Rmax value of 1 mm 
and an hAD value of 15.5 mm, which falls essentially within the 
range that Arya and Dierolf (1992) found to work well. Because 
the UCNEAP model approximates the results of the AP model, 
this equivalence illustrates a close connection between the AD 
and AP models.

The fi ts in Fig. 3 and 4 and the coeffi cients of determination 
in Table 3 show that for each of the three test media, the AD, AP, 
CNEAP, and UCNEAP models yield predictions of about equal 
quality. All of the model fi ts are less good for PODL than for the 
other two samples. Water retention in the PODL sample seems 
to depend, more than for the other two media, on non–texture-
related structural aspects of the pore space. Not surprisingly, the 

underlying assumptions of the general pore-size–particle-size 
framework do not apply equally well to all soils.

Conclusions
The generalized framework represented by Eq. [4] for 

property transfer from particle-size distribution to water reten-
tion relies on few assumptions and makes explicit the mean-
ing of shape similarity in relating particle-size distributions to 
water retention curves. It provides a basis for straightforward 
incorporation of assumptions, such as those that specify pore-
particle geometry, to derive property-transfer models for fun-
damental investigations or practical use. Such new models may 
have greater simplicity, reliability, or applicability than existing 
models. Recasting particular models within this approach clari-
fi es relationships among them, for example that the PC (fi xed 
pore-shape) model is a special case of the AP model, and that the 
AD model under certain conditions is essentially equivalent to 
the AP model. The framework also highlights the assumptions, 
which vary in realism and necessity, that go into these models.

Using this framework produces an explicit algebraic expres-
sion (Eq. [18] and [11]) of the AP model (Ayra and Paris, 1981) 
and various related models. Nearly equivalent to AP are the 
CNEAP (Eq. [22] and [4]) and UCNEAP (Eq. [25]) models, as 
well as the AD model (Arya and Dierolf, 1992) (Eq. [10]). These 
models give results closely approximating those of the original 
AP model and facilitate applications in which it is desirable to 
have consistency with the large body of previous Arya–Paris 
modeled results. These alternative models are formulated on a 
continuous basis, and two of the models (AD and UCNEAP) 
are represented by single-formula mathematical functions. These 
features expand their versatility for algorithmic implementation 
and enhance opportunities for combining, extending, adapting, 
and refi ning them for new and traditional uses.
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